

FH8221G2

单串高精度二合一锂电池保护芯片

特点

- 单节锂离子或锂聚合物电池的理想保护电路
- 高精度的过电压充电保护电压检测 4.400V±25mV
- 高精度的过放保护电压检测
- 高精度过电流放电保护检测 VEDI 0.15V±20mV
- 高精度过电流充电保护检测 VECI -0.15V±20mV
- 可选择多种型号的检测电压和延迟时间
- 可选择不同型号 0V-电池充电允许/禁止
- 带有自动恢复功能的低功耗模式
- 内部集成 RC、内置 MOSFET
- 超小型化的 DFN2x3-6L 封装
- MOSFET: $R_{SS(on)} < 21 \text{ m } \Omega \text{ (V}_{GS} = 3.7 \text{ V}, I_D = 1 \text{ A})$

应用

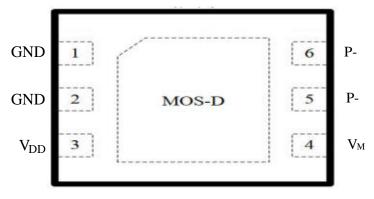
- 锂电池的充电、放电保护电路
- 电话机电池或其它锂电池高精度保护器

概述

FH8221G2 系列电路是一款高精度的单节可充电 锂电池的内置 MOSFET 保护电路,它集高精度过电压充电保护、过电压放电保护、过电流放电保护等性能于一身。

正常状态下,FH8221G2 的 V_{DD} 端电压在过电压充电保护阈值(V_{OC})和过电压放电保护阈值(V_{OD})之间,且其 V_{M} 检测端电压在充电器检测电压(V_{CHG})与过电流放电保护阈值(V_{EDI})之间,此时 FH8221G2 分别使内置 N_{CHG} 等 M_{CHG} 和放电控制 M_{CHG} 等 M_{CHG} 。这时,既可以使用充电器对电池充电,也可以通过负载使电池放电。

FH8221G2 通过检测 VDD 或 VM 端电压 (相对于 Vss 端)来进行过充/放电保护。当充/放电保护条件发生时,内置 M1/M2 由导通变为截止,从而充/放电过程停止。


FH8221G2 对每种保护状态都有相应的恢复条件, 当恢复条件满足以后,内置 M1/M2 由截止变为导通,从 而进入正常状态。

FH8221G2 对每种保护/恢复条件都设置了一定的延迟时间,只有在保护/恢复条件持续到相应的时间以后,才进行相应的保护/恢复。如果保护/恢复条件在相应的延迟时间以前消除,则不进入保护/恢复状态。

FH8221G2 是 DFN2x3-6L 封装,内部集成RC 内置 MOSFET,特别适合在空间有限的电池电源系统中使用。

管脚排列

顶视图

DFN2x3-6L

图 2 FH8221G2 管脚排列(不成比例)

产品信息

[表-1] 产品名称

型号	封装形式	管脚数目	打印标记	
FH8221G2	DFN2x3-6L	6	8221	

[表-2] 电压检测阈值及延迟时间

参数名称	FH8221G2	精度范围	
过电压充电保护阈值 V _{OCTYP}	4.400V	±25mV	
过电压充电恢复阈值 V _{OCRTYP}	4.200V	±50mV	
过电压放电保护阈值 V _{ODTYP}	2.700V	±75mV	
过电压放电恢复阈值 V _{ODRTYP}	3.000V	±75mV	
过电流放电保护阈值 V _{EDITYP}	0.150V	±20mV	
过电流充电保护阈值 V _{ECITYP}	-0.150V	±20mV	
过电压充电保护延迟时间 toctyp	100ms	±50%	
过电压放电保护延迟时间 t _{ODTYP}	40ms	±30%	
过电流放电保护延迟时间 t _{EDITYP}	7.0ms	±30%	
过电流充电保护延迟时间 t _{ЕСПҮР}	25.0ms	±50%	
0V 充电功能	允许		
低功耗模式	允许		
自动恢复功能	允许		

功能框图

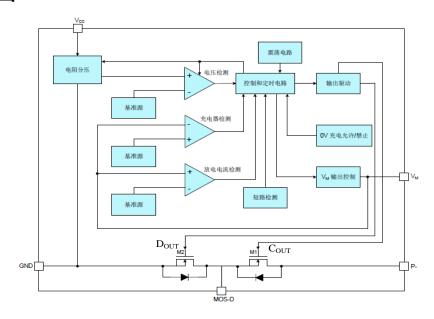


图-1 FH8221G2 功能框图

印字说明

FH8221 产品印字说明(与实物不成比例)

引脚描述

[表 3] 引脚描述

引脚名称	引脚序号	I/O	引脚功能	
GND	1, 2	POW	电源接地端,与供电电源(电池)的负极相连。	
V_{DD}	3	POW	电源输入端,与供电电源(电池)的正极连接。	
V _M	4	I	充/放电电流检测输入端	
P-	5, 6	I/O	与充电器或负载的负极连接。	
MOS-D	Expose Pad	0	两个 MOSFET 的共漏连接端。	

极限参数

供电电源 V _{DD} 0.3V~+10V	贮存温度55℃~125℃
V _M 端允许输入电压V _{DD} -20V~V _{DD} +0.3V	功耗 P _D (T _A =25℃)
工作温度 Ta40℃~+85℃	DFN2x3-6L 封装(热阻 θJA=80℃/W)1.5W
漏-源极耐压20V	焊接温度(锡焊,10秒)260℃
连续漏极电流 (T _A =25℃)5A	ESD 保护 (人体模式)2kV
脉冲漏极电流25A	
结温 150 ℃	

注: 超出所列的极限参数可能导致器件的永久性损坏。以上给出的仅仅是极限范围,在这样的极限条件下工作,器件的技术指标将得不到保证,长期在这种条件下还会影响器件的可靠性。

电气参数

(除非特别注明, 典型值的测试条件为: V_{DD} = 3.6V, T_A = 25℃。标注"◆"的工作温度为: -40℃≤T_A≤85℃)

「表-4] 电气参数

参数名称	符号	测试条件		最小值	典型值	最大值	单位
供电电源	V _{CC}		•	1.5		10	V
过电压充电保护阈值	,,			V _{OCTYP} -0.025	V _{OCTYP}	V _{OCTYP} +0.025	V
(由低到高)	V _{oc}		•	V _{OCTYP} -0.080	V _{OCTYP}	V _{OCTYP} +0.080	V
过电压充电恢复阈值				V _{OCRTYP} -0.050	V _{OCRTYP}	V _{OCRTYP} +0.050	V
(由高到低)	V _{OCR}		•	V _{OCRTYP} -0.080	V _{OCRTYP}	V _{OCRTYP} +0.080	V
过电压充电保护延迟时间	toc	V _{CC} =3.6V→4.4V		0.7×t _{OCTYP}	t _{OCTYP}	1.3×t _{OCTYP}	ms
过电压放电保护阈值	,,			V _{ODTYP} -0.075	V _{ODTYP}	V _{ODTYP} +0.075	V
(由高到低)	V _{OD}		•	V _{ODTYP} -0.105	V _{ODTYP}	V _{ODTYP} +0.105	V
过电压放电恢复阈值	.,			V _{ODRTYP} -0.075	V _{ODRTYP}	V _{ODRTYP} +0.075	V
(由低到高)	V _{ODR}		•	V _{ODRTYP} -0.105	V _{ODRTYP}	V _{ODRTYP} +0.105	V
过电压放电保护延迟时间	t _{OD}	V _{CC} =3.6V→2.4V		0.7×t _{ODTYP}	t _{ODTYP}	1.3×t _{ODTYP}	ms
过电流放电保护阈值	V _{EDI}			V _{EDITYP} -0.020	V _{EDITYP}	V _{EDITYP} +0.020	V
过电流放电保护延迟时间	t _{EDI}			0.7×t _{EDITYP}	T _{EDITYP}	1.3×t _{EDITYP}	ms
过电流放电恢复延迟时间	t _{EDIR}			1.20	1.80	2.40	ms
过电流充电保护阈值	V _{ECI}			V _{ECITYP} -0.020	V _{ECITYP}	V _{ECITYP} +0.020	V
过电流充电保护延迟时间	t _{ECI}			0.7×t _{ECITYP}	T _{ECITYP}	1.3×t _{ECITYP}	ms
过电流充电恢复延迟时间	t _{ECIR}			1.20	1.80	2.40	ms
电池短路保护阈值	V _{SHORT}	Voltage of V _M		0.7	1	1.3	V
电池短路保护延迟时间	t _{SHORT}			20	50	100	μs
充电器检测电压	V _{CHG} =V _{ECI}	V _{CC} =3.0V		V _{ECITYP} -0.020	V _{ECITYP}	V _{ECITYP} +0.020	V
V _M 至 V _{CC} 之间的上拉电阻	R _{VMD}	V _{CC} =1.8V, V _M =0V		100	300	900	kΩ
V _M 至 GND 之间的下拉电阻	R _{VMS}			15	30	45	kΩ
电源电流	Icc	V _{CC} =3.9V			2.0	6.0	μΑ
低功耗模式静态电流	I _{PDWN}	V _{CC} =2.0V			0.7	1.0	μΑ
0V 充电允许电压阈值 (0V 充电允许型号)	V _{ov_CHG}	Charger Voltage		1.2			V
0V 充电禁止阈值 (0V 充电禁止型号)	V _{ov_INH}	Battery Voltage, V _M =-2.0V				1.2	V
N-MOSFET		'					
漏-源极击穿电压 (MOS-D 至 P- / MOS-D 至 GND)	BV _{DS}	V _{GS} =0, I _D =250μA		19.5			٧
击穿电压温度系数	Δ BV _{DS} / Δ T _j	Reference to 25°C, I _D =1mA			0.1		V/°C
静态源-源极通态电阻 (P-至 GND)	R _{SS(ON)}	V _{GS} =3.7V, I _O =1A			18	21	mΩ
		V _{GS} =2.7V, I _O =1A			22	25	mΩ
连续电流	I _{GP}	T _j =25°C			3.5		Α
漏-源极漏电流 (MOS-D 至 P- / MOS-D 至 GND)	I _{DSS}	V _{DS} =19V,V _{GS} =0V T _j =25°C				1	μA

注: 1. 除非特别注明, 所有电压值均相对于Vss而言

^{2.} 参见应用线路图-3。

功能描述

FH8221G2 是一款高精度的锂电池保护电路。正常状态下,如果对电池进行充电,则 FH8221G2 可能会进入过电压充电保护状态;同时,满足一定条件后,又会恢复到正常状态。如果对电池放电,则可能会进入过电压放电保护状态或过电流放电保护状态;同时,满足一定条件后,也会恢复到正常状态。图 3 示出了其典型应用线路图,图 4 是其状态转换图。下面就各状态进行详细描述。

正常状态

在正常状态下,FH8221G2 由电池供电,其 VDD 端电压在过电压充电保护阈值 Voc 和过电压放电保护阈值 Voc 和过电压放电保护阈值VoD之间,VM端电压在充电器检测电压(VcHG)与过电流放电保护阈值(VEDI)之间,CoUT端和 DOUT端都输出高电平,外接充电控制 N-MOS 管 M1 和放电控制N-MOS 管 M2 均导通。此时,既可以使用充电器对电池充电,也可以通过负载使电池放电。

过电压充电保护状态

• 保护条件

正常状态下,对电池进行充电,如果使 V_{DD} 端电压 升高超过过电压充电保护阈值 V_{OC} ,且持续时间超过过电压充电保护延迟时间 t_{OC} ,则 FH8221G2 将使充电控制端 C_{OUT} 由高电平转为 V_{M} 端电平(低电平),从而使外接充电控制 N-MOS 管 M1 关闭,充电回路被"切断",即 FH8221G2 进入过电压充电保护状态。

恢复条件

有以下两种条件可以使 FH8221G2 从过电压充电保护状态恢复到正常状态: 1) 电池由于"自放电"使

端电压低于过电压充电恢复阈值 Vocr; 2)通过负载使电池放电(注意,此时虽然 M1 关闭,但由于其体内二极管的存在,使放电回路仍然存在),当 VDD 端电压低于过电压充电保护阈值 Voc,且 VM 端电压高于过电流放电保护阈值 VeDI(在 M1 导通以前,VM 端电压将比 Vss端高一个二极管的导通压降)。

FH8221G2 恢复到正常状态以后,充电控制端 Cour 将输出高电平,使外接充电控制 N-MOS 管 M1 回到导通状态。

FH8221G2 进入过电压充电保护状态后,如果外部一直接有充电器,致使 V_M 电压小于充电器检测电压(V_{CHG}),那么即使当其 V_{DD} 降至 V_{OCR} 以下,FH8221G2也不会恢复到正常状态。此时必须去掉充电器,FH8221G2才会回到正常状态。

过电压放电保护/低功耗状态

• 保护条件

正常状态下,如果电池放电使 V_{DD} 端电压降低至过电压放电保护阈值 V_{OD} ,且持续时间超过过电压放电保护延迟时间 t_{OD} ,则 FH8221G2 将使放电控制端 D_{OUT} 由高电平转为 V_{SS} 端电平(低电平),从而使外接放电控制 N-MOS 管 M2 关闭,放电回路被"切断",即

FH8221G2进入过电压放电保护状态。同时,V_M端电压将通过内部电阻 R_{VMD}被上拉到 V_{DD}。

在过电压放电保护状态下, V_M 端(亦即 V_{DD} 端)电压总是高于电池短路保护阈值 V_{SHORT} ,满足此条件后,电路会进入"省电"的低功耗模式。此时, V_{DD} 端的电流将低于 $0.7\mu A$ 。

• 恢复条件

对于处在低功耗模式下电路,如果对电池进行充电(同样,由于 M2 体内二极管的存在,此时的充电回路也是存在的),使 FH8221G2 电路的 VM端电压低于电池短路保护阈值 VSHORT,则它将恢复到过电压放电保护状态,此时,放电控制端 Dour 仍为低电平,M2 还是关闭的。如果此时停止充电,由于 VM端仍被 RVMD 上拉到 VDD,大于电池短路保护阈值 VSHORT,因此 FH8221G2 又将回到低功耗模式;只有继续对电池充电,当 VDD端电压大于过电压放电保护阈值 VOD时,FH8221G2 才可从过电压放电保护状态恢复到正常状态。

如果不使用充电器,由于电池去掉负载后的"自升压",可能会使 VoD 端电压超过过电压放电恢复阈值 VoDR,此时 FH8221G2 也将从过电压放电保护状态恢复到正常状态:

FH8221G2 恢复到正常状态以后,放电控制端Dour 将输出高电平,使外接充电控制 N-MOS 管 M2 回到导通状态。

过电流放电

• 保护条件

正常状态下,通过负载对电池放电,FH8221G2 电路的 VM 端电压将随放电电流的增加而升高。如果放电电流增加使 VM 端电压超过过电流放电保护阈值 VEDI,且持续时间超过过电流放电保护延迟时间 tEDI,则FH8221G2进入过电流放电保护状态;

FH8221G2 处于过电流放电,Dour 端将由高电平转为 V_{SS} 端电平,从而使外接放电控制 N-MOS 管 M2 关闭,放电回路被"切断";同时, V_{M} 端将通过内部电阻 R_{VMS} 连接到 V_{SS} ,放电负载取消后, V_{M} 端电平即变为 V_{SS} 端电平。

• 恢复条件

在过电流放电保护状态下,当 V_M 端电压由高降低至低于过电流放电保护阈值 V_{EDI},且持续时间超过过电流放电恢复延迟时间 t_{EDIR},则 FH8221G2 可恢复到正常状态。因此,在过电流放电保护状态下,当所有的放电负载取消后,FH8221G2 即可"自恢复"。

FH8221G2 恢复到正常状态以后,放电控制端 Douт 将输出高电平,使外接充电控制 N-MOS 管 M2 回到导 通状态。

过电流充电

• 保护条件

正常状态下,使用充电器对电池进行充电, V_M端

电压将随充电电流的增加而降低。如果充电电流增加使 V_M 端电压低于过电流充电保护阈值 V_{ECI} ,且持续时间超过过电流充电保护延迟时间 t_{ECI} ,则FH8221G2进入过电流充电保护状态;

FH8221G2 处于过电流充电, C_{OUT} 端将由高电平转为 V_M 端电平,从而使外接放电控制 N-MOS 管 M1 关闭,充电回路被"切断"。

• 恢复条件

在过电流充电保护状态下,如果取消充电器,当 V_M 端电压将升高至高于过电流充电保护阈值 V_{ECI} ,且持续时间超过过电流充电恢复延迟时间 t_{ECIR} ,则 FH8221G2 可恢复到正常状态。

FH8221G2 恢复到正常状态以后,放电控制端 Cour 将输出高电平,使外接充电控制 N-MOS 管 M1 回到导 通状态。

充电器检测

FH8221G2 处于过电压放电保护状态下,如果外部接有充电器,致使 V_M 端电压低于充电器检测电压 (V_{CHG}) ,

则只要 FH8221G2 的 V_{DD} 电压大于 V_{OD} , FH8221G2 即 可恢复到正常状态;如果充电器电压不能使 V_{M} 端电压低于 V_{CHG} ,则 V_{DD} 电压必须大于 V_{ODR} , FH8221G2 才能恢复到正常状态。这就是通常所说的充电器检测功能。

0V 电池充电

• 0V 电池充电允许

对于 0V 电池充电允许的电路,如果使用充电器对电池充电,使 FH8221G2 电路的 VpD 端相对 Vm 端的电压大于 0V 充电允许阈值 Vov_CHG 时,其充电控制端 Cour将被连接到 VpD 端。若该电压能够使外接充电控制 N-MOS 管 M1 导通,则通过放电控制 N-MOS 管 M2 的体内二极管可以形成一个充电回路,使电池电压升高;当电池电压升高至使 VpD 端电压超过过电压放电保护阈值

Vop时,FH8221G2将回到正常状态,同时放电控制端DouT输出高电平,使外接放电控制 N-MOS 管处于导通状态。

• 0V 电池充电禁止

对于 0V 电池充电禁止的电路,如果电池电压低至使 FH8221G2 电路的 V_{DD} 端电压小于 0V 充电禁止阈值 V_{NOCHG} ,则其充电控制端 C_{OUT} 将被短接到 V_{M} 端,使外接充电控制 N-MOS 管始终处于关闭状态。

典型应用电路

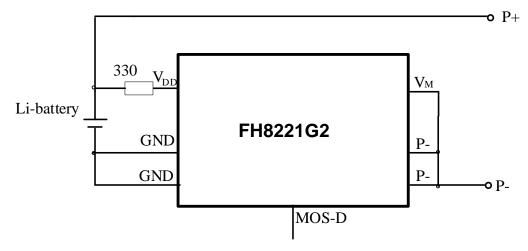


图-3.1 FH8221G2 典型应用电路图

各状态之间的转换图

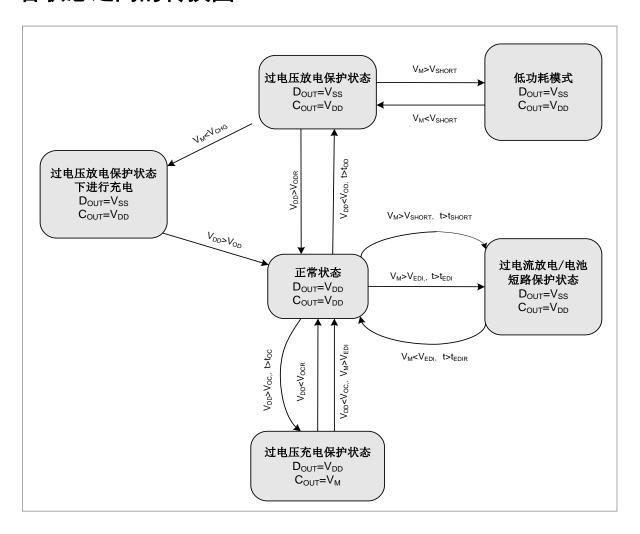


图-4 FH8221G2 各状态之间的转换图

状态转换波形图

过电压充电保护和过电压放电保护状态

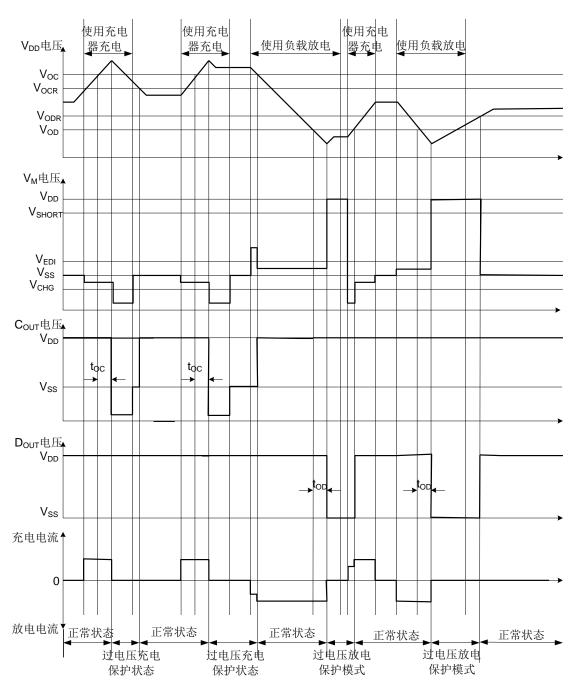


图-5 过电压充电和过电压放电保护状态各点波形图

过电流放电

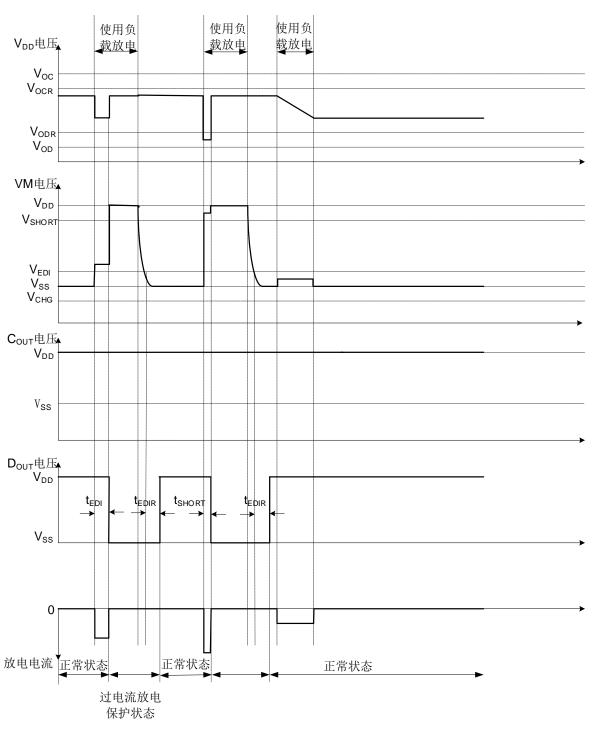
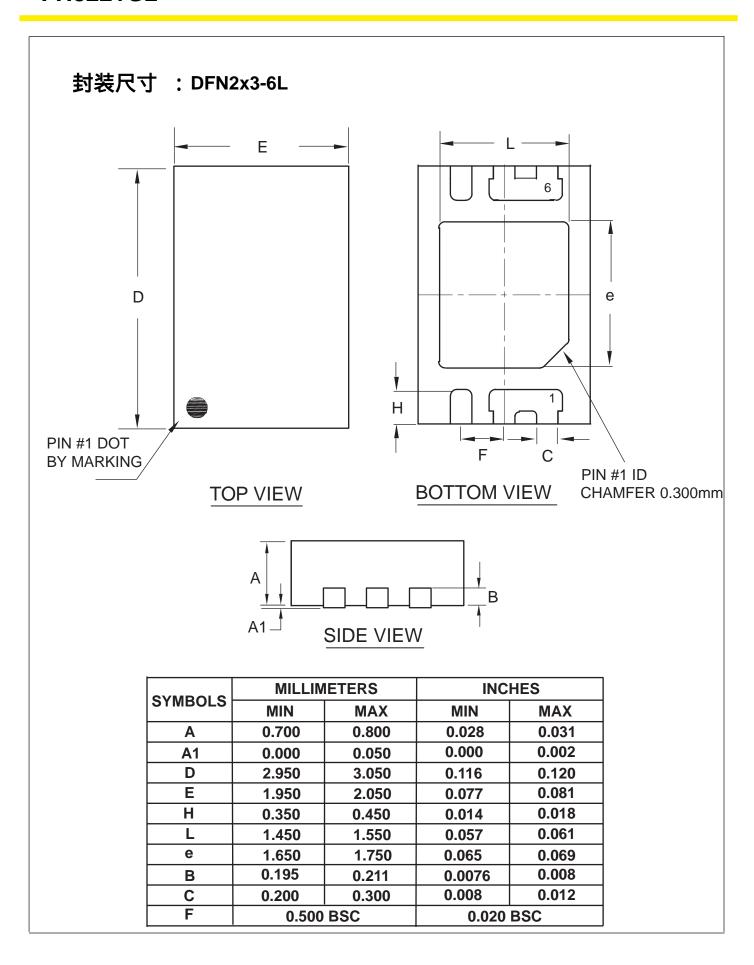



图-6 过电流放电保护状态各点波形图

