

FH**110**2

内置MOSFET锂电池保护IC

FH1102 系列内置有高精度电压检测电路和延迟电路, 通过检测电池的电压, 电流实现对电池的过充电, 过放电, 过电流, 短路保护。适用于单节锂离子/锂聚合物可充电电池的保护电路。

■ 功能特点

1) 高精度电压检测功能:

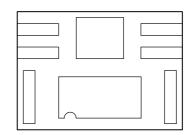
•	过充电检测电压	3.5 V ~ 4.5 V	精度	±50 mV
•	过充电迟滞电压	0.2 V	精度	±80 mV
•	过放电检测电压	2.0 V ~ 3.2 V	精度	±100 mV
•	过放电迟滞电压	0.6 V	精度	±120 mV

2) 放电过电流检测功能:

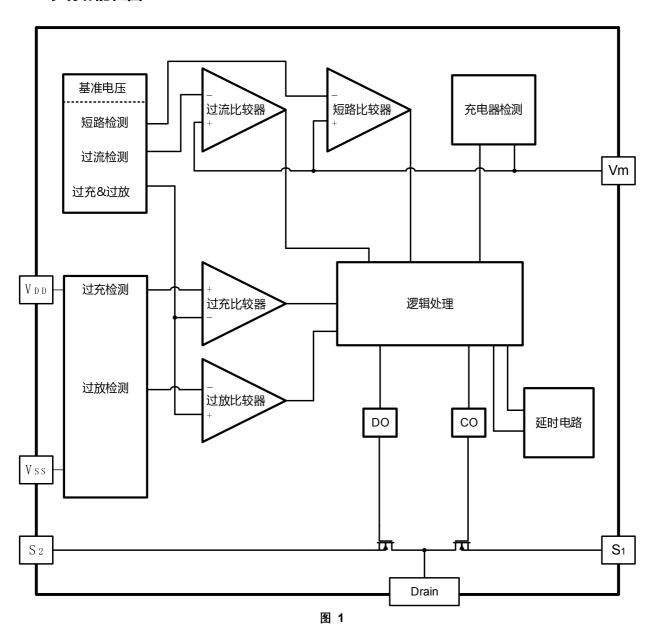
	• 过电流检测电压	0.05V ~ 0.22V	精度±30mV
	● 短路检测电压	1.0V	精度±200mV
3)	充电过流检测电压	-0.10V~-0.20V	精度±30mV

- 4) 内置低导通内阻 N-MOSFET
- 5) 负载检测功能
- 6) 充电器检测功能
- 7) 0V 充电功能
- 8) 低电流消耗:

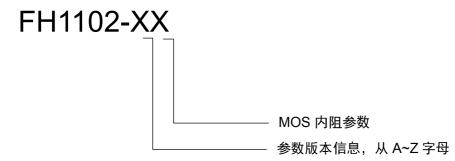
•	工作时	2.7 μA (典型值)	$(Ta = +25^{\circ}C)$
•	休眠时	0.8μA (典型值)	$(Ta = +25^{\circ}C)$


9) 无铅、无卤素。

■ 应用领域


• 手机电池

■ 封装


• DFN 2.2*2.9-6L

■ 系统功能框图

■ 命名规则

■ 产品型号

参数产品名	RSS (ON)	过充电 保护电压 V oc	过充电 解除电压 Vocr	过放电 保护电压 V _{OD}	过放电 解除电压 Vodr	放电 过流 V EC1	短路 V _{SHORT}	充电 过电流 V _{CHA}
FH1102-FA	$30 \text{m}\Omega$	4.425 V	4.225 V	2.40 V	3.00 V	0.150 V	1.00 V	-0.100 V

表 1

■ 引脚排列图

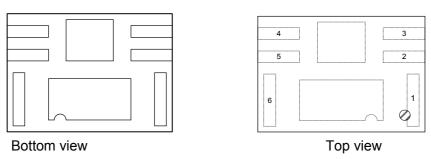
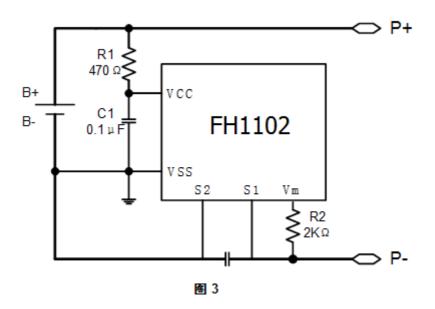


图 2 DFN2.2*2.9-6L 封装

引脚号	符号	描述	
1	S2	放电 MOSFET 源级端,与 VSS 相连	
2	VSS	电源接地端, 与供电电源(电池)的负极相连	
3	VCC	电源输入端, 与供电电源(电池)的正极连接	
4	NC	No connection	
5	VM	充放电电流检测端,与充电器或负载的负极连接	
6	S1	充电 MOSFET 源级端,与充电器或负载的负极连接	

表 2

■ 绝对最大额定值


(除特殊注明以外: Ta = +25°C)

			(13.13.11.12.13.13.11.12.13.13.11.12.13.13.13.13.13.13.13.13.13.13.13.13.13.	,
项目	符号	适用端子	绝对最大额定值	单位
电源电压	VCC	VCC	-0.3 ~ 7	V
Vm 端输入电压	Vm	Vm	VCC-15 to VCC+0.3	V
Gate-Source 耐压	V_{GS}	GS	±12	V
Drain-Source 耐压	V _{DS}	DS	20	V
Drain Current	ID	_	8	Α
工作环境温度	T _{OPR}	_	−40 ~ 85	°C
保存温度	T _{STG}	_	−40 ~ 125	°C

表 3

注意: 所加电压超过绝对最大额定值,可能导致芯片发生不可恢复性损伤。

■ 应用电路

■ 电气特性

(除特殊注明以外:Ta = +25°C,)

Į	页目	符号	测试条件	最小值	典型值	最大值	单位
芯片电源电压		VCC	-	1.0	-	6.0	V
正常工作电流 休眠电流		I _{VCC}	VCC=3.5V	-	2.7	-	μA
		I _{STB}	VCC =2.0V	-	0.8	-	μΑ
	保护电压	V _{oc}	VCC =3.5→4.5V	V _{OC} -0.050	V _{oc}	V _{OC} +0.050	V
过 充	解除电压	V _{OCR}	VCC =4.5→3.5V	V _{OCR} -0.050	Vocr	V _{OCR} +0.050	V
电	保护延时	Toc	VCC =3.5→4.5V	40	80	160	ms
	解除延时	T _{OCR}	VCC =4.5→3.5V	5	20	40	μs
	保护电压	V _{OD}	VC5=3.5→2.0V	V _{OD} -0.100	V _{OD}	V _{OD} +0.100	V
过 放	解除电压	V _{ODR}	VCC =2.0→3.5V	V _{ODR} -0.120	V _{ODR}	V _{ODR} +0.120	V
电	保护延时	T _{OD}	VCC =3.5→2.0V	20	40	80	ms
	解除延时	T _{ODR}	VCC =2.0→3.5V	5	20	40	μs
	保护电压	V _{EC}	VM-VSS=0→0.20V	0.120	0.150	0.180	V
放电 过流	保护延时	T _{EC}	VM-VSS=0→0.20V	5	10	20	ms
	解除延时	T _{ECR}	VM-VSS=0.20→0V	1.0	2.0	4.0	ms
	保护电压	V _{CHA}	VSS-VM=0→0.30V	-0.120	-0.15	-0.180	V
充电 过流	保护延时	T _{CHA}	VSS-VM=0→0.30V	5	10	20	ms
	解除延时	T _{CHAR}	VSS-VM=0.30V→0	1.0	2.0	4.0	ms
	保护电压	V _{SHORT}	VM -VSS=0→1.5V	0.8	1.0	1.2	V
短路	保护延时	T _{SHORT}	VM -VSS=0→1.5V	150	300	600	μs
	解除延时	T _{SHORTR}	VM -VSS=1.5V→0V	1.0	2.0	4.0	ms
Source-source 导通内阻		R _{SS(on)}	VCC=3.7V, I _D =1.0A	-	30	40	mΩ
0V 充电 充电器起始电压		V _{0VCH}	允许向 0V 电池充电功能	1.2	-	-	V

■ 功能说明

1. 过充电状态

任意一个电池电压上升到 V_{OC} 以上并持续了一段时间 T_{OC} , CO 端子的输出就会反转,将充电控制 MOS 管关断,停止充电,这就称为过充电状态。所有电池电压降低到过充电解除电压 V_{OCR} 以下并持续了一段时间 T_{OCR} ,就会解除过充电状态,恢复为正常状态。

进入过充电状态后, 要解除过充电状态, 恢复正常状态, 有两种方法:

- 1) 无论是否连接充电器,由于自放电使电池电压降低到过充电解除电压 Voca 以下时,过充电状态释放,恢复到正常工作状态。
- 2) 连接负载,如果 V_{OCR}<VCC<V_{OC}, V_{VM}>V_{EC},恢复到正常工作状态,此功能称作负载检测功能。

2. 过放电状态

任意一个电池电压降低到 Vod 以下并持续了一段时间 Tod, DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电,这就称为过放电状态。所有电池电压上升到过放电解除电压 Vod 以上并持续了一段时间 Tod, 就会解除过放电状态,恢复为正常状态。

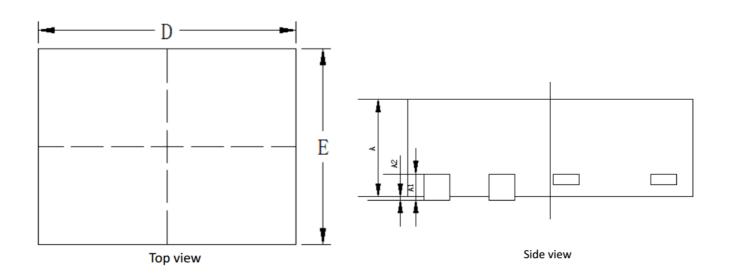
进入过放电状态后,要解除过放电状态,恢复正常状态,有三种方法:

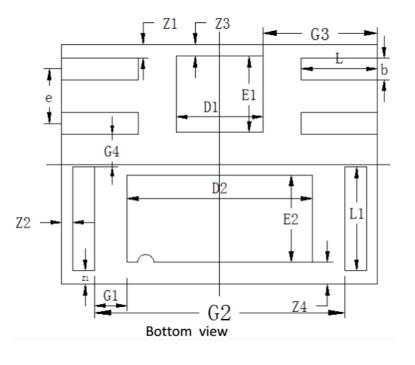
- 1) 连接充电器,若 VM 端子电压低于充电过流检测电压(V_{CHA}),当电池电压高于过放电检测电压(V_{OD})时,过放电状态解除,恢复到正常工作状态,此功能称作充电器检测功能。
- 2) 连接充电器,若 VM 端子电压高于充电过流检测电压(V_{CHA}),当电池电压高于过放电解除电压(**V**_{ODR})时,过放电状态解除,恢复到正常工作状态。
- 3) 没有连接充电器时,如果电池电压自恢复到高于过放电解除电压(VODR)时,过放电状态解除,恢复到正常工作状态

3. 放电过流状态

电池处于放电状态时,VM 端电压随着放电电流的增大而增大,当 VM 端电压高于 VEC 并持续了一段时间 TEC, 芯片认为出现了放电过流;当 VM 端电压高于 VSHORT 并持续了一段时间 TSHORT, 芯片认为出现了短路。上述 2 种状态任意一种状态出现后,DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电,断开负载即可恢复正常状态。

4. 充电过流检测


正常工作状态下的电池,在充电过程中,如果 VM 端子电压低于充电过流检测电压(V_{CHA}),并且这种状态持续的时间超过充电过流检测延迟时间(T_{CHA}),则关闭充电控制用的 MOSFET,停止充电,这个状态称为充电过流状态。进入充电过流检测状态后,如果断开充电器使 VM 端子电压高于充电过流检测电压(V_{CHA})时,充电过流状态被解除,恢复到正常工作状态。


5. 0V 充电功能

此功能用于对已经自放电到 0V 的电池进行再充电。当连接在电池正极(P+)和电池负极(P-)之间的充电器电压,高于向 0V 电池充电的充电器起始电压(V_{ovCH})时,充电控制用 MOSFET 的门极固定为 VDD 端子的电位,由于充电器电压使 MOSFET 的门极和源极之间的电压差高于其导通电压,充电控制用 MOSFET 导通(CO 端子打开),开始充电。这时,放电控制 MOSFET 仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放电检测电压(V_{OD})时,FH1102 系列 IC 进入正常工作状态.

■ 封装信息

DFN 2.2X2.9-6L Package outline dimension

С	Common dimensions(mm)							
REF	Min	Nomal	Max					
Α	0.70	0.75	0.80					
A1	0.00	0.03	0.05					
A2	0.203REF							
D	2.85	2.90	2.95					
E	2.15	2.20	2.25					
D1	0.75	0.80	0.85					
E1	0.65	0.70	0.75					
b	0.15	0.20	0.25					
e	0.50BSC							
L	0.90	0.95	1.00					
b1	0.65	0.70	0.75					
D2	1.65	1.70	1.75					
E2	0.75	0.80	0.85					