

4**串可充电锂电池保护** IC

■ 概述

FH8254 系列是一款专用于 4 串锂/铁电池或聚合物电池的保护芯片,内置有高精度电压检测电路和电流检测电路,通过检测各节电池的电压、充放电电流及温度等信息,实现电池过充电、过放电、放电过电流、短路、充电过电流、过温等保护功能,可通过外接电容来调节过充电、过放电、过电流保护延时。

■ 功能特点

3)

1) 高精度电池电压检测功能:

•	过充电检测电压	3.50 V ~ 4.40 V (步进 50 mV)	精度 ±25 mV
•	过充电迟滞电压	0.10 V	精度 ±50 mV
•	过放电检测电压	2.00 V ~ 3.20 V	精度 ±80 mV
•	过放电迟滞电压	0 ~ 0.50 V	精度 ±100 mV

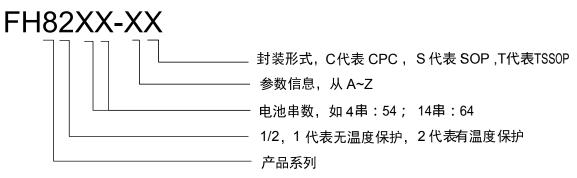
2) 3段放电过电流检测功能:

•	过电流检测电压 1	0.05 V ~ 0.10 V (步进 50 mV)	精度 ±15 mV
•	过电流检测电压 2	0.10 V ~ 0.30 V (步进 50 mV)	精度 ±20%
•	短路检测电压	0.20 V ~ 0.60 V (步进 100 mV)	精度 ±20%
	充电过流检测电压	-0.05 V~-0.10 V (步进 50 mV)	精度 ±15 mV

- 4) 充电器检测及负载检测功能
- 5) 通过外接电容可设置过充电、过放电、过电流保护延时;
- 6) 高温充放电保护及低温充电保护功能;
- 7) 电池断线保护功能;
- 8) NTC 电阻断线保护功能;
- 9) 低电流消耗:

•	工作时	15 μΑ (典型值)	$(Ta = +25^{\circ}C)$
•	休眠时	4.5 μA (典型值)	(Ta = +25°C)

10) 无铅、无卤素。

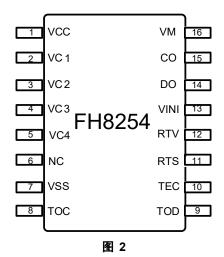

■ 应用领域

- 电动工具
- 扫地机器人
- UPS 后备电源

■ 封装

- CPC-16
- SOP-16
- TSSOP-16

■ 命名规则



■ 产品型号

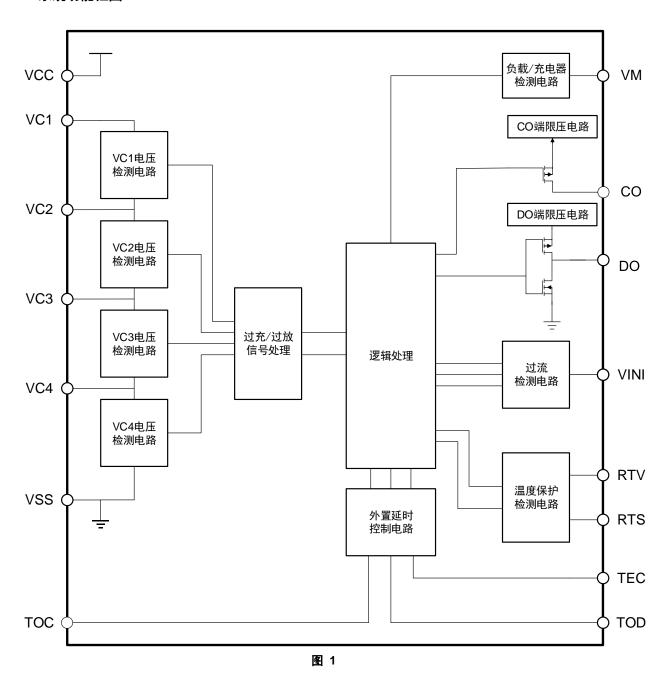

	过充电	过充电	过放电	过放电	放电过流保护电压			充电过	温度
产品名	保护电 压	恢复电 压	保护电 压	恢复电 压	过流 1	过流 2	短路	流 保 护电压	保 护功
	V 0C	V oc r	V OD	V odr	V EC1	V EC2	V SHORT	V cha	能
FH8254-AC/AS/AT	4.225V	4.125V	2.500V	3.000V	100mV	200mV	600mV	-50mV	有
FH8254-BC/BS/BT	4.225V	4.125V	2.700V	3.000V	100mV	200mV	600mV	-50mV	有
FH8254-CC/CS/CT	4.250V	4.150V	2.500V	3.000V	100mV	200mV	600mV	-50mV	有
FH8254-DC/DS/DT	4.250V	4.150V	2.700V	3.000V	100mV	200mV	600mV	-50mV	有
FH8254-GC/GS/GT	3.650V	3.480V	2.320V	2.580V	100mV	200mV	600mV	-50mV	有
FH8254-HC/HS/HT	3.850V	3.670V	2.200V	2.440V	100mV	200mV	600mV	-50mV	有

表 1

■ 引脚排列图

■ 系统功能框图

引脚号	符号	描述
1	VCC	正电源输入端子、电池 1 的正电压连接端子
2	VC1	电池 1 的正电压连接端子
3	VC2	电池 1 的负电压、电池 2 的正电压连接端子
4	VC3	电池 2 的负电压、电池 3 的正电压连接端子
5	VC4	电池 3 的负电压、电池 4 的正电压连接端子
6	NC	无连接
7	VSS	芯片地、电池 4 的负电压连接端子
8	TOC	过充电检测延时用的电容连接端子
9	TOD	过放电检测延时用的电容连接端子
10	TEC	过流检测延时用的电容连接端子
11	RTS	接 NTC,用于温度检测
12	RTV	接电阻到 RTS 端子,用于调节温度保护阈值
13	VINI	过流检测端子
14	DO	过放电检测输出端子
15	СО	过充电检测输出端子
16	VM	过电流保护锁定、充电器及负载检测端子

表 2

■ 绝对最大额定值

(除特殊注明以外: Ta = +25°C)

项目	符号	适用端子	绝对最大额定值	单位
电源电压	VCC	VCC	VSS-0.3 ~ VSS+30	V
各串电池电压	V _{CELL}	VC1-VC2, VC2-VC3, VC3-VC4, VC4-VSS	VSS-0.3 ~ VSS+5.5	V
输入电压 1	V _{IN1}	TOC, TOD, TEC, RTS, RTV, VINI	VSS-0.3 ~ VSS+5.5	V
输入电压 2	V _{IN2}	VM	VCC-30 ~ VCC+0.3	
CO 输出端子电压	Vco	СО	VCC-30 ~ VCC+0.3	V
DO 输出端子电压	V _{DO}	DO	VSS-0.3 ~ VCC+0.3	V
工作环境温度	TOPR	-	−40 ~ 85	°C
保存温度	T _{STG}	_	−40 ~ 125	°C

表 3

注意: 所加电压超过绝对最大额定值,可能导致芯片发生不可恢复性损伤。

■ 电气特性

(除特殊注明以外: Ta = +25°C,)

i	页目	符号	条件	最小值	典型值	最大值	单位
正常工作电流		Ivcc	VC1=VC2=VC3=VC4=3.5V	-	15	30	μA
休日	民电流	I _{STB}	VC1=VC2=VC3=VC4=2.0V	-	4.5	9	μA
	保护电压	Voc	VC1=VC2=VC3=3.5V, VC4=3.5 → 4.4V	V _{OC} -0.025	Voc	V _{OC} +0.025	V
过 充	解除电压	V _{OCR}	VC1=VC2=VC3=3.5V, VC4=4.4 → 3.5V	V _{OCR} -0.050	V _{OCR}	V _{OCR} +0.050	V
电	保护延时	Toc	$\begin{array}{c} \text{VC1=VC2=VC3=3.5V,} \\ \text{VC4=3.5} \rightarrow \text{4.4V} \text{C}_{\text{TOC}}\text{=}0.1 \mu\text{F} \end{array}$	0.5	1.0	1.5	S
	解除延时	T _{OCR}	$\begin{array}{c} \text{VC1=VC2=VC3=3.5V,} \\ \text{VC4=4.4} \rightarrow 3.5 \text{V} \text{C}_{\text{TOC}} = 0.1 \mu\text{F} \end{array}$	200	400	600	ms
	保护电压	V _{OD}	VC1=VC2=VC3=3.5V, VC4=3.5 → 2.0V	V _{OD} -0.080	V_{OD}	V _{OD} +0.080	V
过 放	解除电压	Vodr	VC1=VC2=VC3=3.5V, VC4=2.0 → 3.5V	V _{ODR} -0.100	Vodr	V _{ODR} +0.100	V
电	保护延时	T _{OD}	$\begin{array}{c} \text{VC1=VC2=VC3=3.5V,} \\ \text{VC4=3.5} \rightarrow \text{2.0V} \text{C}_{\text{TOD}}\text{=}0.1 \mu\text{F} \end{array}$	0.5	1.0	1.5	s
	解除延时	Todr	$\begin{array}{c} \text{VC1=VC2=VC3=3.5V,} \\ \text{VC4=2.0} \rightarrow 3.5 \text{V} \text{C}_{\text{TOD}}\text{=}0.1 \mu\text{F} \end{array}$	200	400	600	ms
	保护电压	V _{EC1}	VC1=VC2=VC3=VC4=3.5V, VINI-VSS=0 → 0.12V	V _{EC1} -0.015	V _{EC1}	V _{EC1} +0.015	V
放电 过流 1	保护延时	T _{EC1}	VC1=VC2=VC3=VC4=3.5V, VINI-VSS=0 \rightarrow 0.12V CTEC=22nF	100	200	400	ms
	解除延时	T _{EC1R}	VC1=VC2=VC3=VC4=3.5V, VINI-VSS=0.12 \rightarrow 0V CTEC=22nF	100	200	400	ms
	保护电压	V _{EC2}	VC1=VC2=VC3=VC4=3.5V, VINI-VSS=0 → 0.35V	V _{EC2} *80%	V _{EC2}	V _{EC2} *120%	V
放电 过流 2	保护延时	T _{EC2}	$\begin{array}{c} \text{VC1=VC2=VC3=VC4=3.5V,} \\ \text{VINI-VSS=0} \rightarrow 0.35 \text{V} & \text{C}_{\text{TEC}}\text{=22nF} \end{array}$	10	20	40	ms
	解除延时	T _{EC2R}	$\begin{array}{c} \text{VC1=VC2=VC3=VC4=3.5V,} \\ \text{VINI-VSS=0.35} \rightarrow \text{0V} \qquad \text{C}_{\text{TEC}}\text{=22nF} \end{array}$	100	200	400	ms
	保护电压	V _{SHORT}	VC1=VC2=VC3=VC4=3.5V, VINI-VSS=0 → 0.8V	V _{SHORT} *80%	V _{SHORT}	V _{SHORT} *120%	V
短路	保护延时	T _{SHORT}	VC1=VC2=VC3=VC4=3.5V, VINI-VSS=0 → 0.8V	100	300	600	μs
	解除延时	T _{SHORTR}	$\begin{array}{c} \text{VC1=VC2=VC3=VC4=3.5V,} \\ \text{VINI-VSS=0.8} \rightarrow \text{0V} \end{array}$	100	200	400	ms
去由	保护电压	Vсна	VC1=VC2=VC3=VC4=3.5V, VINI-VSS =0→ -1V	V _{CHA} -0.015	Vсна	V _{CHA} +0.015	V
充电 过流	保护延时	T _{CHA}	VC1=VC2=VC3=VC4=3.5V, VINI-VSS =0→ -1V	6	12	24	ms
	解除延时	TCHAR	VC1=VC2=VC3=VC4=3.5V, VINI-VSS =-1V→0V	1	2	4	ms
断线	保护延时	Tow	-	5	10	15	ms
保护	解除延时	Towr	-	1	2	3	ms

■ 功能说明

1. 过充电

任意一个电池电压上升到 Voc 以上并持续了一段时间 Toc 或更长, CO 端子的输出就会反转,将充电控制 MOS 管关断,停止充电,这称为过充电状态。所有电池电压降低到过充电解除电压 Voc 以下并持续了一段时间 Tocr 或更长,过充电状态解除,恢复为正常状态。若此时连接负载(V_{VM}>V_{EC1}),当所有电池电压降低到过充电保护电压 Voc 以下时,过充电状态解除,恢复为正常状态,此功能称作负载检测功能。

2. 过放电

任意一个电池电压降低到 Vop 以下并持续了一段时间 Top 或更长, DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电,这称为过放电状态。所有电池电压上升到过放电解除电压 Vopr 以上并持续了一段时间 Topr 或更长,过放电状态解除,恢复为正常状态。若此时连接充电器(VM<V_{CHA}),当所有电池电压上升到过放电检测电压(Vop)以上时,过放电状态解除,恢复为正常状态,此功能称作充电器检测功能。

3. 放电过电流

电池处于放电状态时,VINI 端电压随着放电电流的增大而增大,当 VINI 端电压高于 VEC1 并持续了一段时间 TEC1 或更长,芯片认为出现了放电过流 1;当 VINI 端电压高于 VEC2 并持续了一段时间 TEC2 或更长,芯片认为出现了放电过流 2;当 VINI 端电压高于 VSHORT 并持续了一段时间 TSHORT 或更长,芯片认为出现了短路。上述 3 种状态任意一种状态出现后,DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电;进入放电过电流保护状态后,如断开负载(VM<3V),放电过电流状态解除,恢复为正常状态。

4. 延迟时间的设置

过充电保护延时,当 C_{TOC} = 0.1 μ F 时, T_{OC} =1.0s;过放电保护延时,当 C_{TOD} = 0.1 μ F 时, T_{OD} =1.0s;放电过流 1 与过流 2 保护延时由 TEC 端子所接电容 C_{TEC} 共同控制,延时时间比例为 10:1,调节 CTOC,CTOD,CTEC 电容大小时,各功能解除延时随保护延时等比变化。

5. 温度保护

充放电过程中电芯温度过高或过低都会给电芯带来损坏,所以需要连接热敏电阻 R_{NTC} 用于感知温度变化,当 RTS 端子检测到的电压达到内部保护阈值电压,维持延时 10ms 后,即发生过温保护,实现对电芯高低温充放电的保护。

为了适应同口应用时,充放电高温保护点可独立设置,芯片需要识别系统处于充电状态还是放电状态,过温检测时,芯片默认充电状态,当 VM 端大于 4mV 时,芯片识别为放电状态。当发生充电高温保护时,关断充电 MOS 管;当发生放电高温保护时,关断充电和放电 MOS 管;当温度低于-10℃时,充电 MOS 管关断,禁止对电芯充电。

RTV 端子连接电阻 RT 用于设置充电高温保护阈值 THCP,RT 电阻大小为充电高温保护对应 NTC 电阻阻值的 3 倍。放电高温保护温度 THDP 为充电高温保护温度加 20°C,即 THDP=THCP+20°C,低温充电保护温度 TLCP 固定为-10°C。充电高温保护,放电高温保护及低温保护精度均为±2°C,三者的恢复迟滞温度均为 10°C。

例如,R_{NTC} 选用 100kΩ@25°C,T_{HCP} 设置为 50°C,此时 R_{NTC}=35.88KΩ@50°C,R_T=3*R_{NTC}@50°C=107.64kΩ,则,充电高温保护恢复温度为 T_{HCPR}=T_{HCP}-10°C=40°C;

THDP=THCP+20°C=70°C, 放电高温保护恢复温度为 THDPR=THDP-10°C=60°C;

TLCP=-10℃, 低温保护恢复温度 TLCPR=TLCP+10℃=0℃。

FH8254 系列具有 NTC 断线保护功能,NTC 断线后,CO、DO 端子的输出均会反转;如不使用温度保护功能,将RTS 端子对 VSS 接 1K 电阻,RTV 端子悬空即可。

6. 充电过电流

正常工作状态下的电池,在充电过程中,如果 VINI 端子电压低于充电过流检测电压(VCHA),并且这种状态持续的时间超过充电过流检测延迟时间 TCHA 或更长,则关闭充电控制用的 MOSFET,停止充电,这个状态称为充电过流状态。进入充电过流检测状态后,如果断开充电器(VM>-0.20V)充电过电流状态被解除,恢复到正常工作状态。

7. 断线保护

正常状态下,芯片管脚 VC1、VC2、VC3、VC4 中任意一根或多根与电芯的连线断开,芯片通过检测并判断为发生断线状态,强制将 CO 输出为高阻态,DO 输出为低电平,即同时关闭充放电 MOS 管,此状态称为断线保护状态。当断开的连线重新正确连接后,芯片退出断线保护状态。

■ 应用电路

1. 充放电回路共用

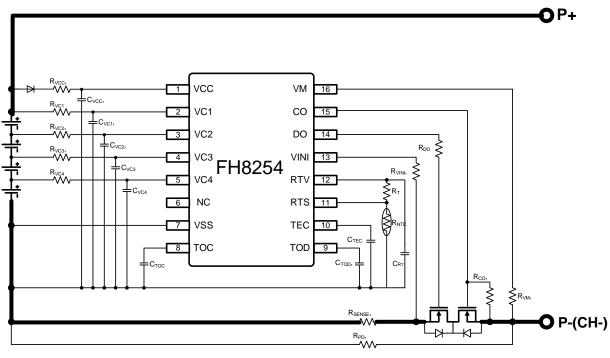


图 3

2. 充放电回路分开

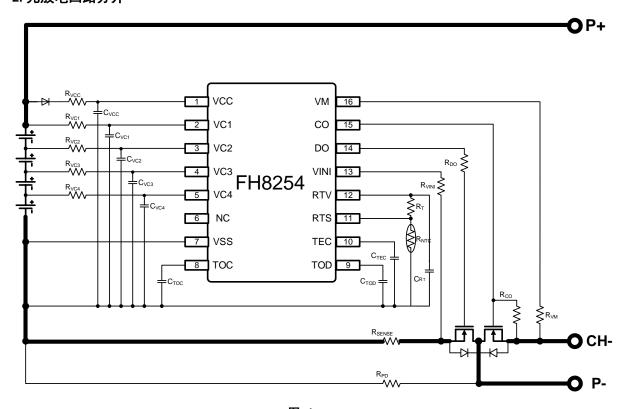
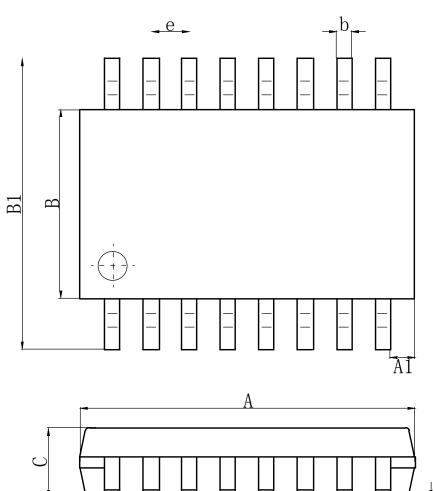
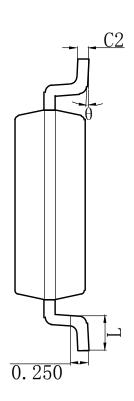
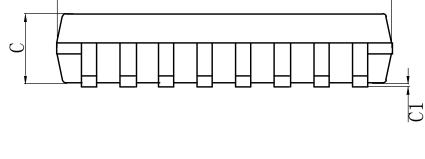


图 4

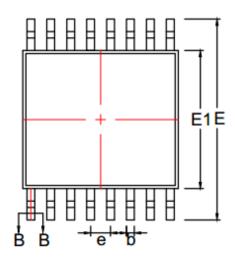

■ BOM 清单

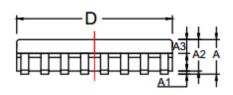

器件标识	典型值	参数范围	单位
RVCC, RVC1, RVC2, RVC3, RVC4	1	0.1 ~ 1	kΩ
R _{NTC}	100 @25°C	-	kΩ
R _T	3*R _{NTC} @T _{HCP}	-	kΩ
Rvini	1	0.1 ~ 2	kΩ
R _{VM}	200	10 ~ 510	kΩ
R _{DO}	2	1 ~ 10	kΩ
Rco	10	5 ~ 12	МΩ
R _{PD}	3	2~4	ΜΩ
R _{SENSE}	_	可依实际过流值设定	mΩ
Cvcc	2.2	1~10µF,耐压≥25V	μF
Cvc1, Cvc2, Cvc3, Cvc4	0.1	0.1~1µF,耐压≥25V	μF
C _{TOC} , C _{TOD}	0.1	可依设定选取,耐压≥10V	μF
Стес	22	可依设定选取,耐压≥10V	nF
Crt	22	4.7~100nF,耐压≥10V	nF
D1	1N4148	If=1mA, Vf<0.75V	_


表 5

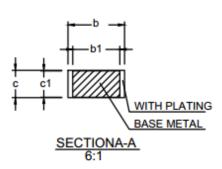
■ 封装信息

CPC-16 封装尺寸

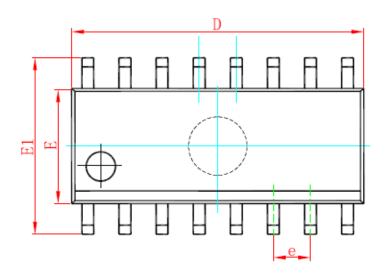


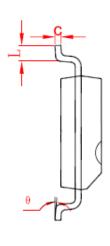


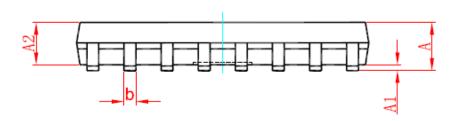
尺寸标注	最小(mm)	最大(mm)	尺寸 标注	最小(mm)	最大(mm)
A	4.50	4.70	С	0.85	1.05
A1	0.29	0.39	C1	0.00	0.15
е	0.5	3 (BSC)	C2	0. 15	0.18
В	2.50	2.70	L	0.40	0.60
B1	3.85	4. 15	θ	0°	8°
b	0. 16	0. 26			


■ 封装信息

TSSOP-16 封装尺寸






** -		尺寸 (mm)				
符号	最小值	典型值	最大值			
А			1.20			
A ₁	0.05		0.15			
A ₂	0.90	1.00	1.05			
A ₃	0.39	0.44	0.49			
b	0.20		0.30			
b ₁	0.19	0.22	0.25			
С	0.110	0.127	0.145			
C1	0.12	0.13	0.14			
D	4.86	4.96	5.06			
Е	6.20	6.40	6.60			
E ₁	4.30	4.40	4.50			
е		0.65BSC				
L	0.45	0.60	0.75			
L ₁		1.00BSC				
θ	0		8°			

■ 封装信息

SOP-16 封装尺寸

Court of	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1. 350	1. 750	0.053	0.069	
A1	0. 100	0. 250	0.004	0. 010	
A2	1. 350	1. 550	0. 053	0.061	
b	0. 330	0.510	0.013	0. 020	
C	0. 170	0. 250	0.007	0. 010	
D	9. 800	10. 200	0. 386	0. 402	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270	(BSC)	0.050	(BSC)	
L	0. 400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	

注意:

- 1、本说明书中的内容,随着产品的改进,有可能不经过预告而更改。请客户及时与业务部联系。
- 2、本规格书中的图形、应用电路等,因第三方工业所有权引发的问题,本公司不承担其责任。
- 3、本产品在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。使用 在客户的产品或设备中,以上条件我们不作保证,建议客户做充分的评估和测试。
- 4、请注意输入电压、输出电压、负载电流的使用条件,使 IC 内的功耗不超过封装的容许功耗。对于客户在超出说明书中规定额定值使用产品,即使是瞬间的使用,由此所造成的损失,本公司不承担任何责任。
- 5、本产品虽内置防静电保护电路,但请不要施加超过保护电路性能的过大静电。
- 6、本规格书中的产品,未经书面许可,不可使用在要求高可靠性的电路中。例如健康医疗器械、防灾器械、车辆器械、车载器械及航空器械等对人体产生影响的器械或装置,不得作为其部件使用。
- 7、本公司一直致力于提高产品的质量和可靠度,但所有的半导体产品都有一定的失效概率,这些失效概率可能会导致一些人身事故、火灾事故等。当设计产品时,请充分留意冗余设计并采用安全指标,这样可以避免事故的发生。
- 8、本规格书中内容,未经本公司许可,严禁用于其它目的之转载或复制。