

FH8215FL

单节锂离子和锂聚合物电池保护芯片

FH8215FL 内置有高精度电压检测电路和延迟电路,通过检测电池的电压、电流,实现对电池的过充电、过放电、过电流等保护。适用于单节锂离子/锂聚合物可充电电池的保护电路。

■ 功能特点

1)	高精度电压检测功能:
''	

•	过充电检测电压	4.475 V
•	过充电恢复电压	4.275 V
•	过放电检测电压	2.850 V
•	过放电恢复电压	3.050 V
•	放电过流检测	3.6 A
•	短路电流检测	12 A
•	充电过流检测	2.5 A

2) 内部检测延迟时间:

•	过充电保护延时	1.0 s
•	过充电保护延时	128 ms
•	过充电保护延时	10 ms
•	过充电保护延时	10 ms

3) 充电器检测功能及负载检测功能

4) 0V 充电功能

 5) 放电过流状态的接触电压
 断开负载

 6) 放电过流状态的接触电压
 VRIOV

7) 低电流消耗:

工作模式 1 μA (典型值) (Ta = +25°C)
 过放电时耗电流(有过放自恢复功能) 0.5 μA (典型值) (Ta = +25°C)

8) 无铅、无卤素。

■ 应用领域

• 锂离子可充电电池

■ 封装/引脚信息

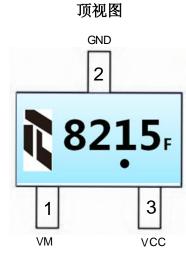
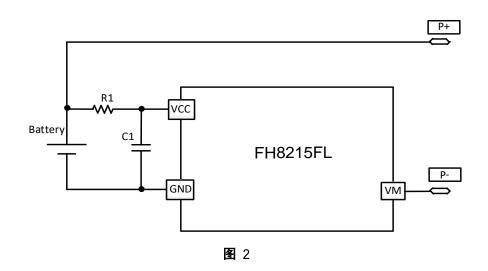


图 1. SOT23-3L 引脚定义图


备注:型号丝印上下打点为内部代码,每批次可能会变化。

■ 引脚描述

引脚	名称	功能
1	VM	连接电池组的负极。内部 FET 开关将这个端口连接到 GND。
2	GND	接地引脚
3	VCC	电源引脚

表 1

■ 应用电路

 器件标识
 典型值
 参数范围
 单位

 R1
 1000
 510~ 1500
 Ω

 C1
 0.1
 0.047~ 0.22
 μF

表 2

注意:

- 1. 上述参数有可能不经预告而作更改。
- 2. 上述IC的原理图以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。

■ 系统功能框图

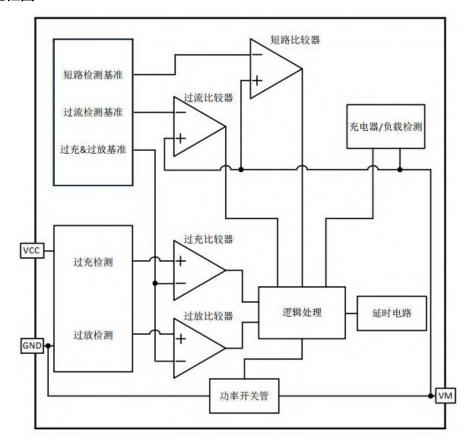


图 3

■ 产品型号

产品名称	R _S S(ON)	过充电 保护电压 V _{oc}	过充电 解除电压 V _{OCR}	过放电 保护电压 V _{OD}	过放电 解除电压 V _{ODR}	放电过流 检测电流 I _{DI}	短路电流 检测电流 I _{SHORT}	充电流 检测电流 Icı
FH8215FL	60 mΩ	4.475 V	4.275 V	2.850 V	3.050 V	3.6 A	12 A	2.5 A

表 3

■ 绝对最大额定值

(除特殊注明以外: Ta = +25°C)

项目	符号	绝对最大额定值	单位
VCC 和 GND 之间输入电压	VCC	-0.3 ~ 6	V
VM 输入端子电压	V_{VM}	-6 ~ 10	V
工作温度范围	T _{OPR}	40 ~ +85	°C
储存温度范围	T_{STG}	_55 ~ +1 25	°C
ESD HBM 模式	-	4000	V

表 4

注意: 所加电压超过绝对最大额定值,可能导致芯片发生不可恢复性损伤。

■ 电气特性

(除特殊注明以外: Ta = +25°C)

			T	1	(15本行が不)工・1万ト	λ/ . Iα	20 0)
Í	页目	符号	测试条件	最小值	典型值	最大值	单位
芯片印	电源电压	VCC	-	1.0	-	5.5	V
正常	L作电流	lvcc	VCC=3.5V	0.42	1.0	2.5	μA
过放电	寸消耗电流	IOPED	VCC =1.5V	-	0.5	1.0	μΑ
过	保护电压	Voc	VCC =3.5→4.5V	4.425	4.475	4.525	V
充	解除电压	Vocr	VCC =4.5→3.5V	4.225	4.275	4.325	V
电	保护延时	Toc	VCC =3.5→4.5V	500	1000	1500	ms
过	保护电压	V _{OD}	VC5=3.5→2.0V	2.750	2.850	2.950	V
放电	解除电压	Vodr	VCC =2.0→3.5V	2.950	3.050	3.150	V
HE.	保护延时	T _{OD}	VCC =3.5→2.0V	64	128	192	ms
放电	过流保护	I _{DI}	VM-VSS=0→0.20V	2.7	3.6	4.5	А
过流	保护延时	T _{EC}	VM-VSS=0→0.20V	5	10	20	ms
充电 过流	过流保护	Icı	VSS-VM=0→0.30V	1.8	2.5	3.2	Α
过流	保护延时	Тсна	VSS-VM=0→0.30V	5	10	20	ms
短路	过流保护	Ishort	VM -VSS=0→1.5V	6	12	18	А
及더	保护延时	Tshort	VM -VSS=0→1.5V	100	250	400	μs
	T内阻 GND内阻	Rss (ON)	VCC=3.6V , IVM=1A	40	60	80	mΩ
VCC 端 ⁻ 间	子-VM 端子 电阻	R _{VMD}	VCC=2.0V vM=0V	135	270	540	kΩ
间	-VSS 端子 电阻	R _{VMS}	VCC=3.6V, V _{VM} =1.0V	10	20	30	kΩ
0V 充电器	' 充电 起始电压	Vovch	允许向 0V 电池充电功能	0	1.5	2.0	V

表 5

■ 功能说明

1. 正常工作状态

IC持续检测连接在VCC与GND端子之间电池电压,以及流过VM到GND端子之间的电流,来控制充电和放电。当电池电压在过放电保护电压(Vop)以上并在过充电保护电压(Voc)以下,且流过VM端子到GND的电流在充电过流保护阈值(Ici)和放电过流保护阈值(Idi)之间时,IC内部MOSFET导通,这个状态称为"正常工作状态"。此状态下,可以正常充电和放电。

2. 过充电状态

在正常条件下的充电过程中,当电池电压高于过充检测电压(Voc),并持续时间达到过充电压检测延迟时间(Toc)或更长, IC 内部的 MOSFET 会关闭,并停止充电,这种情况称为过充电压保护。

过充电状态在如下两种情况下可以解除:

- 1) VM<VLD, 电池电压降低到过充电解除电压(VOCR)以下时, 过充电状态就会释放。
- 2) VM>VLD, 当电池电压降低到过充电保护电压(Voc)以下时,过充电状态解除,恢复到正常工作状态,此功能称为负载检测功能。

此处的(VLD)=IDI*RSS(ON),就是IC内部设置的负载检测电压

3. 过放电状态

电池电压降低到 Vod 以下并持续了一段时间 Tod, IC 内部的 MOSFET 会关闭,并停止放电,这就称为过放电状态。当 IC 内部的 MOSFET 关闭后, VM 会被内部上拉电阻 Rvmd 上拉到 VCC, IC 功耗降低至 loped。

进入过放电状态后,要解除过放电状态,恢复正常状态,有以下几种情况:

- 1) 连接充电器,若 VM < 0V (典型值),当电池电压高于过放电保护电压(Vop)时,过放电状态解除,恢复到正常工作状态,此功能称作充电器检测功能。
- 2) 连接充电器,若 VM>0V(典型值),当电池电压高于过放电解除电压(V_{ODR})时,过放电状态解除,恢复到正常工作状态。
- 3) 没有连接充电器时,当电池电压高于过放电解除电压(V_{ODR})时,过放电状态解除,恢复到正常工作状态,即"无休眠功能"

4. 放电过流状态

正常工作状态下的电池,IC通过VM端子电压持续检测放电电流。如果放电电流超过放电电流限流值(IDI),并且这种状态持续的时间超过放电过流保护延迟时间(TDI),IC内部的MOSFET会关闭,并停止放电,这个状态称为"放电过流状态"。如果放电电流超过短路保护电流值,并且这种状态持续的时间超过负载短路保护延迟时间(TSHORT),IC内部的MOSFET会关闭,并停止放电,这个状态称为"负载短路状态"。

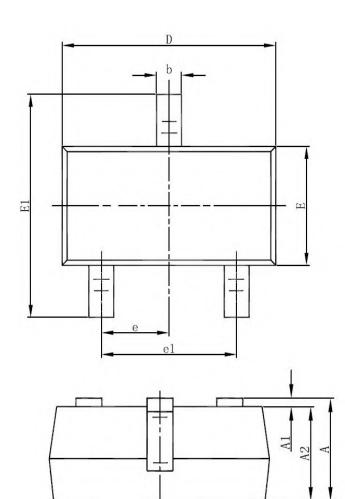
放电过流状态的解除条件"断开负载"及放电过流状态的解除电压"VRIOV"

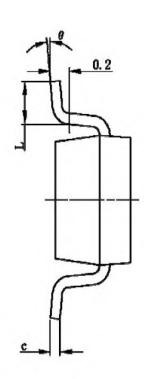
在放电过流状态下,芯片内部的VM端子与GND端子间可通过Rv_Ms电阻来连接。但是,在连接着负载的期间,VM端子电压由于连接着负载而变为VCC端子电压。若断开与负载的连接,则VM端子恢复至GND端子电压。当VM端子电压降低到V_{RIOV}以下时,即可解除放电过流状态。

5. 充电过流保护

正常工作状态下的电池,在充电过程中,如果流过 GND 到 VM 的电流值超过充电过流保护值(Ici),并且这种状态持续的时间超过充电过流保护延迟时间(Tci),则 IC 内部的 MOSFET 会关闭,并停止充电,这个状态称为充电过流状态。进入充电

FH8215FL


过流检测状态后,如果断开充电器使流过 GND 到 VM 端子电流低于充电过流保护值(IcI)时,充电过流状态被解除,恢复到正常工作状态。


6. 向 0V 电池充电功能(允许)

此功能用于对已经自放电到 0V 的电池进行再充电。当连接在电池正极(P+)和电池负极(P-)之间的充电器电压,高于向 0V 电池充电的充电器起始电压(VovcH)时,IC 内部充电控制 MOSFET 会导通,开始充电。当电池电压高于过放电保护电压 (VoD)时,IC 进入正常工作状态。

注意:请询问电池供应商,确认所购买的电池是否具备"允许向 0V 电池充电"的功能,还是"禁止向 0V 电池充电"的功能。

封装信息:S0T23-3L

Symbol	Dimensions In	lillimeters	Dimensions In Inches		
Syllibol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(I	BSC)	0.037(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	