

FHDW01-E系列

单串锂电池保护电路

FHDW01-E系列内置有高精度电压检测电路和延迟电路,通过检测电池的电压、电流,实现对电池的过充电、过放电、过电流等保护。适用于单节锂离子/锂聚合物可充电电池的保护电路。

■ 功能特点

1) 高精度电压检测功能:

过充电检测电压
过充电恢复电压
过放电检测电压
过放电检测电压
过放电恢复电压
3.000V

2) 放电过电流检测功能:

● 过电流检测电压 150mV~180mV

● 短路检测电压 1.000V 3) 充电过流检测电压 -150mV

4) 负载检测功能

5) 充电器检测功能

6) 0V 充电功能

7) 过放自恢复功能

8) 低电流消耗:

工作模式
1.5 μA (典型值) (Ta = +25℃)
过放电时耗电流(有过放自恢复功能)
0.7 μA (典型值) (Ta = +25℃)

9) 无铅、无卤素。

■ 应用领域

• 锂离子可充电电池

■ 管脚排列: SOT23-6

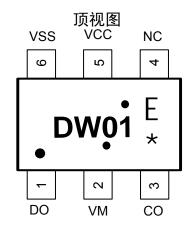
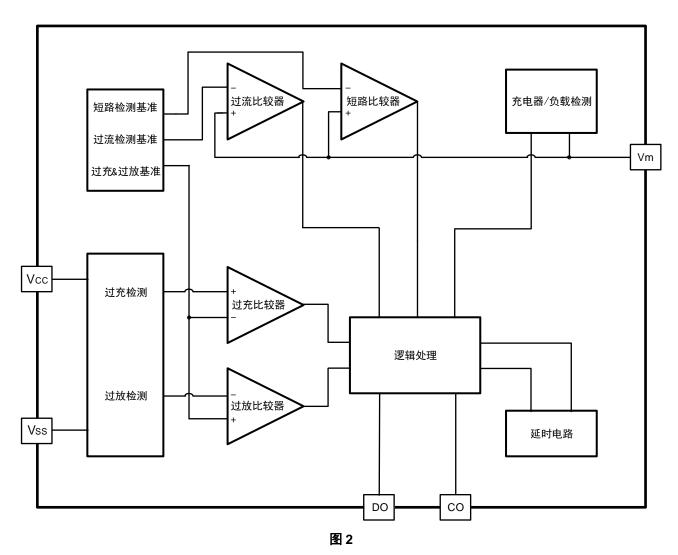


图-1 FHDW01-E系列管脚排列及丝印


备注: 1、*号丝印对应产品型号最后一位字母,例如FHDW01-EA 为: A 2、产品型号上下打点为内部标识,每个批次产品可能在不同位置

■ 产品型号

参数产品名	过充电 保护电压 Voc	过充电 解除电压 Vocr	过放电 保护电压 VOD	过放电 解除电压 VODR	放电 过流 VEC1	短路 VSHORT	充电过电流 VCHA	过充 锁定	过放 锁定
FHDW01-EA	4.280 V	4.080 V	2.400 V	3.000 V	150mV	1.000 V	-150mV	Y	N
FHDW01-ED	4.280 V	4.080 V	2.400 V	3.000 V	180mV	1.000 V	-150mV	Y	N

表 1

■ 系统功能框图

■ 引脚描述

引脚号	符号	描述	
1	DO	放电 MOSFET 控制端子	
2	VM	充放电电流检测端子	
3	СО	充电 MOSFET 控制端子	
4	NC	未连接	
5	VCC	电源输入端, 与供电电源 (电池) 的正极连接	
6	VSS	电源接地端, 与供电电源(电池)的负极相连	

表 2

■ 绝对最大额定值

(除特殊注明以外: Ta = +25°C)

项目	符号	适用端子	绝对最大额定值	单位
电源电压	VCC	VCC	-0.3 ~ 6	V
VM 端输入电压	VM	VM	VCC-15 to VCC+0.3	V
工作环境温度	T _{OPR}	_	−40 ~ 85	°C
保存温度	T _{STG}		55 ~ 125	°C

表 3

注意: 所加电压超过绝对最大额定值, 可能导致芯片发生不可恢复性损伤。

■ 电气特性

(除特殊注明以外: Ta = +25°C,)

ij	页目	符号	测试条件	最小值	典型值	最大值	单位
芯片电源电压		VCC	-	1.0	-	5.5	V
正常コ	正常工作电流		VCC=3.5V	-	1.5	5.0	μA
过放电距	寸消耗电流	I _{OPED}	VCC =1.5V	-	0.7	1.5	μA
过 1	保护电压	V _{oc}	VCC =3.5→4.5V	4.230	4.280	4.330	V
充电	解除电压	V _{OCR}	VCC =4.5→3.5V	4.030	4.080	4.130	V
~	保护延时	T _{oc}	VCC =3.5→4.5V	40	80	160	ms
过	保护电压	V _{OD}	VC5=3.5→2.0V	2.300	2.400	2.500	V
放 电	解除电压	V _{ODR}	VCC =2.0→3.5V	2.900	3.000	3.100	V
	保护延时	T _{OD}	VCC =3.5→2.0V	20	40	80	ms
放电	保护电压	V _{EC}	VM-VSS=0→0.20V	VEC1-30	VEC1	VEC1+30	mV
过流	保护延时	T _{EC}	VM-VSS=0→0.20V	5	10	20	ms
充电 过流	保护电压	V _{CHA}	VSS-VM=0→0.30V	-0.190	-0.150	-0.110	mV
过流	保护延时	T _{CHA}	VSS-VM=0→0.30V	5	10	20	ms
短路 -	保护电压	V _{SHORT}	VM -VSS=0→1.5V	0.700	1.000	1.300	V
	保护延时	T _{SHORT}	VM -VSS=0→1.5V	100	300	600	μs
0V 充电器	充电 起始电压	V _{ovch}	允许向 0V 电池充电功能	1.2	-	-	V

表 4

■ 功能说明

1. 过充电状态

电池电压上升到 V_{OC} 以上并持续了一段时间 T_{OC} , CO 端子的输出就会反转,将充电控制 MOS 管关断,停止充电,这就称为过充电状态。电池电压降低到过充电解除电压 V_{OCR} 以下并持续了一段时间 T_{OCR} ,就会解除过充电状态,恢复为正常状态。

进入过充电状态后, 要解除过充电状态, 恢复到正常状态, 有两种方法:

- 1) 断开充电器,不连接负载且 V_{CHA}<V_{VM}<V_{EC},电池电压降低到过充电解除电压 V_{OCR} 以下时,过充电状态就会释放
- 2) 断开充电器,连接负载,如 $V_{VM}>V_{EC}$,此时只需 $VCC<V_{OC}$,过充电状态就会释放,此功能称作负载检测功能。注意:检测到过充电后,如果一直连接充电器,那么即使电芯电压降低到 V_{OCR} 以下,过充电状态也无法释放。通过断开充电器连接,且 $VM>V_{CHA}$ 才能解除过充放电状态。

2. 过放电状态

电池电压降低到 Vod 以下并持续了一段时间 Tod, DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电,这就称为过放电状态。电池电压上升到过放电解除电压 Vod 以上并持续了一段时间 Tod, 就会解除过放电状态,恢复为正常状态。

进入过放电状态后,要解除过放电状态,恢复正常状态,有三种方法:

- 1) 连接充电器,若 VM 端子电压低于充电过流检测电压(V_{CHA}),当电池电压高于过放电检测电压(V_{OD})时,过放电状态解除,恢复到正常工作状态,此功能称作充电器检测功能。
- 2) 连接充电器,若 VM 端子电压高于充电过流检测电压(V_{CHA}),当电池电压高于过放电解除电压(V_{ODR})时,过放电状态解除,恢复到正常工作状态。
- 3) 没有连接充电器时,如果电池电压自恢复到高于过放电解除电压(VODR)时,过放电状态解除,恢复到正常工作状态

3. 放电过流状态

电池处于放电状态时,VM 端电压随着放电电流的增大而增大,当 VM 端电压高于 VEC 并持续了一段时间 TEC, 芯片认为出现了放电过流;当 VM 端电压高于 VSHORT 并持续了一段时间 TSHORT, 芯片认为出现了短路。上述 2 种状态任意一种状态出现后,DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电。

只要负载等效阻值变大或断开负载,使 VM<VEC,即可解除放电过流状态,恢复正常状态。

4. 充电过流检测

正常工作状态下的电池,在充电过程中,如果 VM 端子电压低于充电过流检测电压(V_{CHA}),并且这种状态持续的时间超过充电过流检测延迟时间(T_{CHA}),则关闭充电控制用的 MOSFET,停止充电,这个状态称为充电过流状态。进入充电过流检测状态后,如果断开充电器使 VM 端子电压高于充电过流检测电压(V_{CHA})时,充电过流状态被解除,恢复到正常工作状态。

5. 0V 充电功能

此功能用于对已经自放电到 0V 的电池进行再充电。当连接在电池正极(P+)和电池负极(P-)之间的充电器电压,高于向 0V 电池充电的充电器起始电压(VovcH)时,充电控制用 MOSFET 的门极固定为 VDD 端子的电位,由于充电器电压使 MOSFET 的门极和源极之间的电压差高于其导通电压,充电控制用 MOSFET 导通(CO 端子打开),开始充电。这时,放电控制 MOSFET 仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放电检测电压(Vop)时,IC 进入正常工作状态.

■ 应用电路

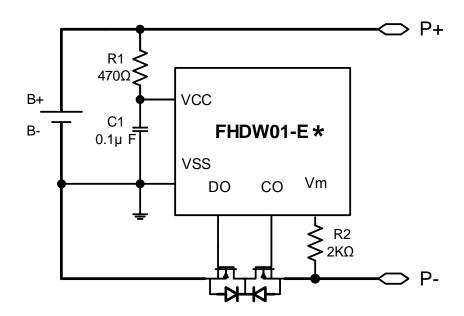


图 3

器件标识	典型值	参数范围	单位
R ₁	470	470 ~ 1500	Ω
R ₂	2	1~3	kΩ
C ₁	0.1	0.1~1	μF

注意: R1, R2 不可省略, 且 R1 必须大于或等于 470 欧。

封装尺寸: SOT23-6

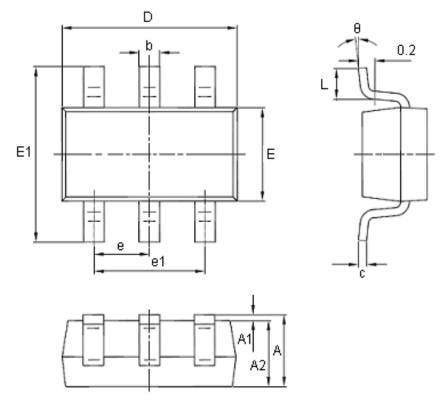


图-7 SOT23-6 封装外形尺寸图

[表 5] 图 9 的尺寸(单位:毫米)

符号	最小值	最大值	
Α	1.050	1.250	
A1	0.000	0.100	
A2	1.050	1.150	
b	0.300	0.500	
С	0.100	0.200	
D	2.280	3.020	
E	1.500	1.700	
E1	2.650	2.950	
е	0.950 (BSC)		
e1	1.800	2.000	
L	0.300	0.600	
θ	00	80	