

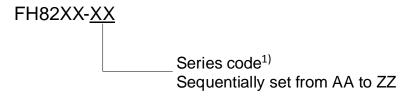
DESCRIPTION

FH8253B is a low-power battery protection IC for the 3 series rechargeable lithium-ion battery pack. FH8253B integrates high-accuracy voltage detection and temperature detection circuits, which realizes multiple protect functions including over-charge, over-discharge, over-current, over-temperature, under-temperature and open wire detection.

FEATURES

- Input voltage up to 30V
- High-accuracy voltage detection for each cell
 - Over-charge detection voltage V_{OC} : 3.65V, 3.85V, 4.2~4.375V (25mV step) \pm 25mV (25 $^{\circ}$ C)
 - Over-charge release hysteresis V_{OCRH}: 0.1~0.4V (100mV step)
 - Over-discharge detection voltage V_{OD}: 2.0V, 2.3V, 2.5V, 2.7V ±80mV (25°C)
 - Over-discharge release hysteresis V_{ODRH}: 0.3~0.7V (200mV step)
- Discharge over-current detection in 3-step:
 - 1stdetection voltage V_{DOI1}: 50~150mV (25mV step) ±10mV
 - 2nddetection voltage V_{DOI2}: 2V_{DOI1} ±20mV
 - Short circuit detection voltage V_{SHT}: 0.4V ±50mV
- Charge over-current detection voltage V_{COI}: -20mV ±5mV, -30mV ±10mV, -50mV ±10mV, Disable
- High-accuracy battery temperature detection
 - Charging over-temperature protection threshold V_{COT}: 0.206V (50 ±5°C) or 0.18V (55 ±5°C)
 - Charging under-temperature protection threshold V_{CUT}: 0.815V (-10 ±5°C) or 0.692V (0 ±5°C)
 - Discharging over-temperature protection threshold V_{DOT}: 0.12V (70 ±5°C)
 - Discharging under-temperature protection threshold V_{DUT}: 0.926V (-20 ±5°C)
- 3-step discharge over-current protection
 - For 1^{st} , t_{DOI1} : 0.2s, 0.5s, 1s, 2s
 - For 2^{nd} , t_{DOI2} : $t_{DOI1} \times 10\%$
 - For 3rd, t_{SHT} : 300µs
- Open wire detection
- Wide range of operation temperature -40°C to +85°C
- Low current consumption (T=25°C)

Full power mode 10µA Typ.
Sleep mode 1.5µA Typ.
Shutdown mode 350nA Typ.


• Package: CPC-14

APPLICATIONS

- Rechargeable Lithium-ion Battery Pack
- Power Tools, Garden Tools

Selection Guides

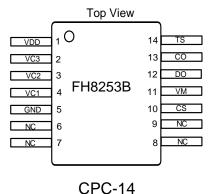
Production Name Structure

Notes:

1): Relates to different detection threshold voltage

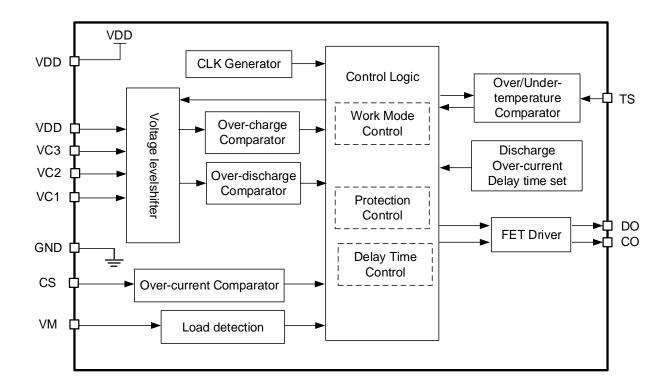
Products Series List¹⁾²⁾

Part NO.	Over -charge detection voltage [Voc]	Over -charge release voltage [VocL]	Over -discharge detection voltage [Vod]	Over -discharge release voltage [Vodh]	Charge over-current detection voltage [Vcol]	Discharge over-current 1 detection voltage [V _{DOI1}]	Discharge over-current 2 detection voltage [V _{DOI2}]	Short circuit detection voltage [V _{SHT}]	Charger lock after over- charge
FH8253B-AC	4.250V	4.05V	2.7V	3.0V	50mV	100mV	200mV	400mV	N


Part NO.	Discharge over-current 1 detection delay time [t _{DOI1}]	Charging over-temperature threshold [T _{COT}]	Charging under-temperature threshold [T _{CUT}]	Discharging over-temperature threshold [T _{DOT]}	Discharging under-temperature threshold [T _{DUT}]
FH8253B-AC	1s	50℃	-10℃	70℃	-20℃

Notes:

www.xfhong.com


- 1) The temperature protection threshold depends on the external NTC (103AT β =3435) and bypass resistance.
- 2) Please contact our sales office for products with detection voltage values other than those specified above.

PIN CONFIGURATION

2/12

BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Name	Description
1	VDD	Input pin for positive power supply.
2	VC3	Connection pin for battery 3's positive voltage.
3	VC2	Connection pin for battery 2's positive voltage.
4	VC1	Connection pin for battery 1's positive voltage.
5	GND	Input pin for negative power supply.
6	NC	
7	NC	
8	NC	
9	NC	
10	CS	Pin for charge and discharge current sensing.
11	VM	Pin for load and charger detection.
12	DO	Gate connection pin for discharge control MOSFET.
		This is a dual-purpose pin:
13	СО	1) Gate connection pin for charge control MOSFET;
		2) Pin for charger detection.
14	TS	Thermal sense input.

ABSOLUTE MAXIMUM RATING¹⁾

VDD	0.3V to +30V
VC3, VC2, VC1, CS, VM, DO	VSS-0.3V to VDD+0.3V
VC(n)-VC(n-1) n=2,3	0.3V to 20V
VDD-VC3	0.3V to 20V
CO	VDD-30V to VDD+0.3V
TS	-0.3V to +3.6V
Junction Temperature ²⁾	150°C
Lead Temperature	260°C
Storage Temperature	65°C to +150°C
RECOMMENDED OPERATING CONDITIONS ³⁾	
Junction Temperature (T _J)	-40°C to 125°C
THERMAL PERFORMANCE ⁴⁾ MSOP10	$ heta_{J\!A} hinspace heta_{J\!C}$ 15045°C/W

Notes:

- 1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMENDED OPERATING CONDITIONS.
- 2) The FH8253B includes thermal protection that is intended to protect the device in overload conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

_lte	em	Symbol	Condition	Min.	Тур.	Max. U	Inits
Power supply							
Power supply range	5)	V_{DD}		3		15	V
Davier on recet these		V	Rising		1.6	2	V
Power-on reset thre	snoid	V_{POR}	Falling		1.4	1.8	V
Current consumptio	n during full power	I _{FP}	V _{DD} =9.9V		10	15	μА
Current consumptio	n during sleep	I _{SLEEP}	V _{DD} =8V		1.5	3	μА
Current consumptio	n during shutdown	I _{SD}	V _{DD} =0.8V		350	500	nA
VC3~VC1 pin curre	nt	I _{VC3~1}		-1.0	0	1.0	μА
Voltage/Current	Protections						
Detection period tim	ne for OV, UV ⁵⁾	t _{DETV}		0.35	0.5	0.65	s
	Detection voltage	V _{oc}		V _{OC} -0.025	V _{oc}	V _{OC} +0.025	V
	Release voltage	V _{OCL}		V _{OCL} -0.05	V _{OCL}	V _{OCL} +0.05	V
Over-charge	Detection delay time ⁵⁾	toc		0.7	1	1.95	s
	Release delay time ⁵⁾	t _{OCL}		30	60	90	ms
	Detection voltage	V _{OD}		V _{OD} -0.08	V _{OD}	V _{OD} +0.08	V
	Release voltage	Vодн	100mV /200mV /300mV Hysteresis	V _{ODH} -0.1	V _{ОДН}	V _{ODH} +0.1	V
Over-discharge			others	V _{ODH} -0.13		V _{ODH} +0.13	
	Detection delay time ⁵⁾	t _{OD}		0.7	1	1.95	S
	Release delay time ⁵⁾	todh		30	60	90	ms
1 st Discharge over-current detection voltage		V _{DOI1}		V _{DOI1} -10	V _{DOI1}	V _{DOI1} +10	mV
1 st Discharge over-current detection delay time ⁵⁾		t _{DOI1}		0.7*t _{DOI1}	t _{DOI1}	1.3*t _{DOI1}	s
2 nd Discharge ove	er-current detection	V_{DOI2}		V _{DOI2} -20	V _{DOI2}	V _{DOI2} +20	mV

2 nd Discharge over-current detection delay time ⁵⁾		t _{DOI2}		0.7*t _{DOI2}	t _{DOI2}	1.3*t _{DOI2}	s
Load short circuit detection voltage		V _{SHT}		350	400	450	mV
Load short circuit de	etection delay time ⁵⁾	t _{SHT}		200	300	360	μS
Discharge over-cu	rrent release delay	t _{DOIR}		30	60	90	ms
			V _{COI} =-20mV	V _{COI} -5	V _{COI}	V _{COI} +5	mV
Charge over-curren	t detection voltage	V_{COI}	V _{COI} =-30mV or -50mV	V _{COI} -10	V _{COI}	V _{COI} +10	mV
Charge over-curre	ent detection delay	t _{COI}		6	10	14	ms
Charge over-current time ⁵⁾	ent release delay	t _{COIR}		1	2	2.6	s
Temperature Pro	otection						
Temperature detect	tion period time ⁵⁾	t _{DETT}		1.4	2	2.6	S
Temperature detect	tion time ⁵⁾	t _{DET}		2.8	4	5.2	ms
Discharging detecti	on threshold	V_{TH_DSG}		1.5	3	4.5	mV
Reference current detection ⁵⁾	Reference current for temperature detection ⁵⁾			58	60	62	μА
	Protection	V _{сот}	50°C±5°C	184	206	238	>/
Charging	threshold		55°C±5°C	161	180	202	mV
over-temperature	Release threshold	V _{COTRT}	45°C±5°C	211	236	265	mV
			50°C±5°C	184	206	231	
	Protection	V	-10°C±5°C	0.773	0.815	0.848	- V
Charging	threshold	V _{CUT}	0°C±5°C	0.642	0.692	0.735	
under- temperature	Deleges threshold	V	-5°C±5°C	0.708	0.754	0.793	
temperature	Release threshold	V _{CUTRT}	5°C±5°C	0.578	0.629	0.675	
Discharging Protection threshold		V_{DOT}	70°C±5°C	108	120	133	mV
over-temperature Release threshold		V_{DOTRT}	60°C±5°C	141	157	176	
Discharging under-	Protection threshold	V _{DUT}	-20°C±5°C	0.897	0.926	0.945	V
temperature Release threshold		V _{DUTRT}	-10°C±5°C	0.773	0.815	0.848	V
Temperature detect	ion delay time ⁵⁾	t _{OT}		1	2	5.2	S
Temperature prote time ⁵⁾	ction release delay	t _{OTR}		1	2	5.2	s

Chip over-temperature protection threshold ⁵⁾	Тснір		130	150	170	°C		
Chip over-temperature protection release threshold ⁵⁾	T _{CHIPR}		105	125	145	°C		
Output Voltage and Current								
CO output voltage "L"	V_{COL}			High_Z				
CO output voltage "H"	V_{COH}			V_{DD}		V		
DO output voltage "L"	V_{DOL}			0	0.5	V		
DO output voltage "H"	V_{DOH}			V_{DD}		V		
CO pin source current	I _{COH}	V _{DD} =6V	0.7	1	1.3	mA		
DO pin source current	I _{DOH}	V _{DD} =9V	0.7	1.7	2.7	mA		
DO pin sink current	I _{DOL}	V _{DD} =6V	7	10	13	mA		
Charger and Load detection function	on							
VM pull down resistance after discharge	Б		00	400	4.40	1.0		
MOSFET turn off	R_{VMDN}		60	100	140	kΩ		
Load detection threshold	V_{VMTH}		0.8	1	1.2	V		
Charger detection current	Ico	Charge over-current, Over-charge	50	100	170	nA		
Charger detection threshold	Vсна	Over-charge, Over-discharge, Charge over-current	20	70	120	mV		
Other function								
Sleep status delay time ⁵⁾	t _{SLP}		5	10	15	s		
Sleep status exit delay time ⁵⁾	t _{SLPR}		30	60	90	ms		
Charge / Discharge mode change time ⁵⁾	t _{CST}		30	60	90	ms		
Test mode entry threshold ⁵⁾	V _{ENTRY}				2	V		
Test mode entry time ⁵⁾	t _{ENTRY}		50	100	150	ms		
Test mode exit time ⁵⁾	t _{EXIT}		8	16	24	s		

Note: 5) Guaranteed by design.

FUNCTIONAL DESCRIPTION

Power on Reset

Battery cells can be connected in any order, but it is recommend that the GND and VDD pins are connected first, and then connection continues from lower to higher voltage cells.

When the battery is connected to FH8253B, V_{DD} rises up. If $V_{DD} < V_{POR}$, all circuits power down and both charge and discharge MOSFETs turn off. When $V_{DD} > V_{POR}$, FH8253B enters initial status.

Normal Status

In the FH8253B, both CO and DO pins output high level voltage when all battery voltages are between V_{OD} and V_{OC} , the battery temperature is between V_{COT} and V_{CUT} , and the CS pin's voltage is between V_{COI} and V_{DOI1} . This is the normal status. At this time, the charge and discharge MOSFETs are on.

Over-Charge Status

FH8253Bdetects cell voltage once per t_{DETV} . When any battery voltage increases to V_{OC} or higher for longer than t_{OC} , the CO pin outputs "High_Z". Since the CO pin pulled down to the PACK- voltage by an external resistor, the charge MOSFET is turned off to stop charging. This is the over-charge status.

The over-charge status is released if either of the conditions mentioned below is satisfied:

- (1) When the CO pin voltage is higher than V_{CHA} (optional by part number) and all battery voltage drops to V_{OCL} or lower for longer than t_{OCL} .
- (2) When the CS pin voltage is higher than V_{TH_DSG} during discharging and all battery voltage drops to V_{OC} or lower for longer than $400\mu s$.

(3) When the CS pin voltage is higher than V_{DOI1} during discharging and all battery voltage drops to V_{OC} or lower for longer than $60\mu s$.

Over-Discharge Status

FH8253B detects cell voltage once per T_{DETV} . When any voltage of the batteries decreases to V_{OD} or lower for longer than t_{OD} , the DO pin outputs low level voltage. The discharge MOSFET is turned off and it stops discharging. This is the over-discharge status.

The over-discharge status is released if either condition mentioned below is satisfied:

- (1) The VM pin voltage is lower than V_{VMTH} , and all battery voltages increase to V_{ODH} or higher for longer than t_{ODH} .
- (2) The VM pin voltage is lower than V_{CHA} , and all battery voltages increase to V_{OD} or higher for longer than t_{ODH} .

Sleep Status

If FH8253B is in over-discharge status, and the sleep timer overflow, the FH8253B enters sleep status. At sleep status, the discharge MOSFET is turned off and the charge MOSFET is turned on. The total current consumption is $1.5\mu A$ in sleep status.

The sleep status is released if the following condition is satisfied:

The VM pin voltage is lower than V_{CHA} for longer than t_{SLPR} .

Discharge Over-Current Status

In the FH8253B, if the CS pin voltage increases to the level of V_{DOI} or more for longer than t_{DOI} , the DO pin outputs low level voltage. The discharge MOSFET is turned off and it stops

discharging. This is the discharge over-current status.

The VM pin is pulled down to the GND level via R_{VMDN} internally.

FH8253B has three thresholds for discharge over-current detection (V_{DOI1} , V_{DOI2} , V_{SHT}).

The discharge over-current status is released if the following condition is satisfied:

The VM pin voltage is lower than V_{VMTH} for longer than t_{DOIR} .

Charge Over-Current Status

In the FH8253B, if the CS pin voltage decreases to the level of V_{COI} or lower for longer than t_{COI} , the CO pin outputs "High_Z" and the DO pin outputs low level voltage. The charge and discharge MOSFETs are turned off. This is the charge over-current status.

The charge over-current is released if the following condition is satisfied:

The CO pin voltage is higher than V_{CHA} for longer than t_{COIR} .

Charge Temperature Protection Status

The FH8253B detects the temperature every t_{DETT} , see Figure 1 for temperature detection timing chart. In normal status, the FH8253B continuously turns on TS output for t_{DETT} every t_{DETT} . When the TS output turns on, the external temperature is monitored.

Figure 1 Temperature Detection Timing

In normal status, When the CS pin voltage is higher than V_{TH_DSG} for longer than t_{CST} , the battery pack is regarded as in discharging status. Otherwise, the battery pack is regarded

as in charging status.

At normal status, if the system is in charging mode, once the battery temperature is out of the normal range of charging temperature and the state continues for longer than t_{OT} , FH8253B shuts down the charge MOSFET.

This status is released if either condition mentioned below is satisfied:

- (1) When the system is in charging mode, the TS pin voltage is higher than V_{COTRT} and lower than V_{CUTRT} for longer than t_{OTR} .
- (2) When the system is in discharging mode the CS pin voltage is higher than V_{TH_DSG} and lower than V_{DOI1} for longer than $400\mu s$.
- (3) When the system is in discharging mode the CS pin voltage is higher than V_{DOI1} for longer than $60\mu s$.

Discharge Temperature Protection Status

At normal status, if the system is in discharging mode, once the battery temperature is out of the normal range of discharging temperature threshold and the state continues for $t_{\rm OT}$, FH8253B shuts down the both charge and discharge MOSFETs, and enters discharge temperature protection status.

At charge temperature protection status, if the system is in charge mode, and the TS pin voltage is out of the normal range of discharging temperature threshold for longer than $t_{\rm OT}$, FH8253B shuts down the both charge and discharge MOSFETs, enters discharge temperature protection status.

This status is released if either condition mentioned below is satisfied:

(1) When the system is in charging mode, the VM pin voltage is lower than V_{VMTH} and the TS pin voltage is higher than V_{DOTRT} and

lower than V_{COTRT} , this status is released to the charge temperature protection status. Similarly, the TS pin voltage is lower than V_{DUTRT} and higher than V_{CUTRT} for longer than t_{OTR} , this status is released to the charge temperature protection status

(2) When the system is in discharging mode, the VM pin voltage is lower than V_{VMTH} and the TS pin voltage is higher than V_{DOTRT} and lower than V_{DUTRT} for longer than t_{OTR}. This status is released to the normal status.

Open Wire Detection

FH8253B integrates open wire detection and protection. When any of VC3 to VC1 pin is open, it detects open wire, charging and discharging are prohibited after a delay time.

Test Mode

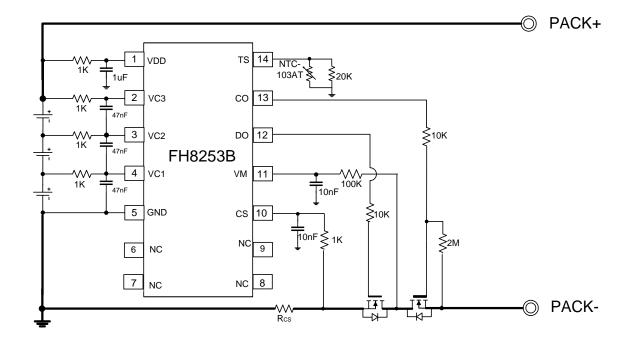
When DO pin voltage is a V_{ENTRY} higher than VDD pin voltage for longer than t_{ENTRY} , the FH8253B is in test mode. In this mode the delay time of all protection including over-charge, over-discharge and over-current is shortened, see Table 1. The chip can be quickly tested by the user in this mode.

Mode	toc	t _{OD}	t _{COI}	t _{DOI1}
	(max)	(max)	(max)	(max)
Normal	1.95s	1.95s	10ms	t _{DOI1}
Test	10ms	10ms	600us	1.5ms

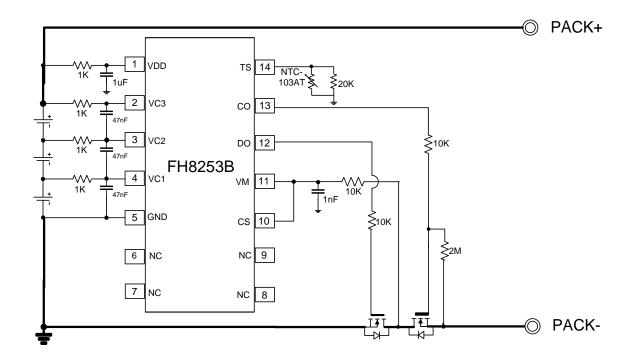
Mode	t _{DOI2}	t _{OT}	t _{SLP}	
	(max)	(max)	(max)	
Normal	t _{DOI2}	5s	10s	
Test	1ms	12ms	2ms	

Table 1 The Delay Time of Different Mode

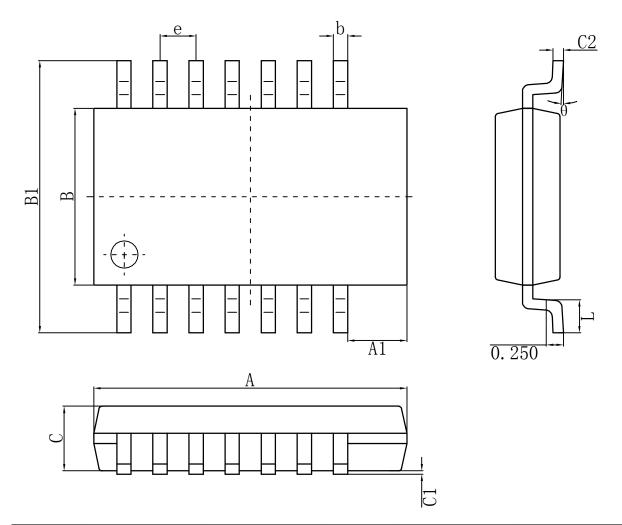
Package and Bag Caution


- 1. FH8253B is MSD (Moisture-Sensitive Devices) and its MSL⁶⁾ (Moisture-Sensitive Level) is level-3.
- 2. Calculated shelf life in sealed bag is $\underline{12}$ months at <40 °C and <90%RH(Relative Humidity).
- 3. Peak package body temperature¹⁾ is 260°C.
- After bag is opened, devices that will be subjected to reflow solder or other high temperature process must
 - a) Mounted within <u>168 hours</u> of factory at the condition ≤30°C/60%RH.
 - b) Stored at <10%RH.
- 5. Devices require bake before mounting if Humidity Indicator Car(HIC) is >10%RH when read at $23\pm5^{\circ}$ C.
- 6. If baking is required, devices may be baked for 48 hours at $125\pm5\,^{\circ}\mathrm{C}$. If device containers cannot be subjected to high temperature for shorter bake times are desired, reference IPC/JEDEC J-STD-033 for bake procedure.

Note:


6) Level and body temperature defined by IPC/JEDEC J-STD-020.

TYPICAL APPLICATION


With Current Sense Resistance R_{CS}

Without Current Sense Resistance Rcs

Package Dimensions : CPC-14

尺寸标注	最小(mm)	最大(mm)	尺寸 标注	最小(mm)	最大(mm)
A	4.50	4.70	С	0.85	1.05
A1	0.82	0.92	C1	0.00	0. 15
е	0. 5	3 (BSC)	C2	0. 15	0. 18
В	2.50	2.70	L	0.40	0.60
B1	3.85	4. 15	θ	0°	8°
b	0. 16	0. 26			